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This chapter explores:
The concept of centrality, distinguishing between local and overall centrality
Intermediaries in networks
The relationship of central agents to peripheral agents
Studies of bank centrality in corporate networks



One of the earliest concepts to be utilised in social network analysis was the idea of the sociometric concept of the ‘star’: that person who is the most ‘popular’ in his or her group or who stands at the centre of attention. Moreno (1934) reported the popularity of particular pupils within their school class by examining the friendship choices that were made. A popular individual is a centre of attention and appears in a sociogram at the centre of a radiating set of directed lines. This idea of the sociometric star has been formalised by Bavelas (1950) as the concept of ‘centrality’. Since this pioneering work, a number of competing concepts of centrality have been proposed. What unites the majority of the approaches to centrality is a concern for the relative centrality of the various points in the graph. This is the question of so-called ‘point centrality’. But from this common concern they diverge sharply. Some of the concepts have been especially formulated as ways of understanding how some central individuals or organisations may be able to act as intermediaries, mediating the demands and influence of the other members of their network. This highlights the fact that there are a number of different ways in which an agent can be ‘central’ to their network. Alongside the idea of popularity is that of unpopularity and of exclusion from participation with those who are the centre of attention. Low measures of centrality can therefore be taken as measures of various forms of exclusion or peripherality.
In this chapter I will review the various approaches to centrality and I will discuss whether these measures also provide a way of identifying a subset within the network of especially prominent agents who may be regarded as collectively holding a central position within their network.


Local and Overall Centrality
The concept of point centrality, I have argued, originated in the sociometric concept of the ‘star’. A central point is one that is literally at the centre of a number of connections. It is a point with a great many direct contacts with other points. The simplest and most straightforward way to measure point centrality, therefore, is by the degrees of the various points in the graph. The degree, it will be recalled, is simply the number of other points to which a point is adjacent. A point is central, then, if it has a high degree: the corresponding agent is central in the sense of being ‘well connected’ or ‘in the thick of things’. A degree-based measure of point centrality, therefore, corresponds to the intuitive notion of how well connected a point is within its local environment –whether, for example, it has a large number of direct contacts. Because this is calculated simply in terms of the number of points to which a particular point is adjacent, ignoring any indirect connections it may have, the degree can be regarded as a measure of ‘local centrality’. The most systematic elaboration of this concept is to be found in Nieminen (1974). Degree-based measures of local centrality can also be computed for points in directed graphs, though in these situations each point will have two measures of its local centrality, one corresponding to its indegree and the other to its outdegree. In directed graphs, then, it makes sense to distinguish between the ‘in-centrality’ and the ‘out-centrality’ of the various points (Knoke and Burt, 1983).
A degree-based measure of point centrality can be extended beyond direct connections to those at various path distances. In this case, the relevant neighbourhood is widened to include the more distant connections of the points. A point may, then, be assessed for its local centrality in terms of both direct (distance 1) connections and distance 2 connections: or, indeed, whatever cut-off path distance is chosen. The principal problem with extending this measure of point centrality beyond distance 2 connections is that in graphs with even a very modest density the majority of the points tend to be linked through indirect connections at relatively short path distances. Thus, comparisons of local centrality scores at distance 4, for example, are unlikely to be informative if most of the points are connected to most other points at this distance. Clearly, the cut-off threshold which is to be used is a matter for the informed judgement of the researcher who is undertaking the investigation, but distance 1 and distance 2 connections are likely to be the most informative in the majority of studies.
It is important to recognise that the measurement of local centrality does not involve the idea that there will be any unique ‘central’ point in the network. In Figure 6.1, for example, points A, B and C can each be seen as local centres: they each have degree 5, compared with degrees 1 or 2 for all other points. Even if point A had many more direct connections than points B and C it would not lie at ‘the’ centre of the network: it lies physically towards one ‘side’ of the chain of points, and its centrality is a purely ‘local’ phenomenon. The degree, therefore, is a measure of local centrality, and a comparison of the degrees of the various points in a graph can show how well connected the points are with their local environments.
This measure of local centrality has one major limitation. This is that comparisons of centrality scores can only meaningfully be made among the members of the same graph or between graphs that are the same size. The degree of a point depends on, among other things, the size of the graph, and so measures of local centrality cannot be compared when graphs differ significantly in size. The use of the raw degree score may, therefore, be misleading. A central point with a degree of 25 in a graph of 100 points, for example, is not as central as one with a degree of 25 in a graph of 30 points, and neither can be easily compared to a central point with a degree of 6 in a graph of 10 points. In an attempt to overcome this problem, Freeman (1979) proposed a relative measure of local centrality in which the actual number of connections is related to the maximum number that it could sustain. Thus, a degree of 25 in a graph of 100 points can be translated into a relative local centrality of 0.25. A degree of 25 in a graph of 30 points equates to a relative centrality of 0.86, and a degree of 6 in a graph of 10 points equates to a relative centrality of 0.67.1 Figure 6.1 shows that relative centrality also allows a comparison to be made between points within the same network. This idea can be extended to directed graphs. A relative measure, therefore, gives a far more standardised approach to the measurement of local centrality.
Figure 6.1 Local and global centrality
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The problem of comparing raw degree measures of centrality is closely related to the problem discussed in the previous chapter of comparing densities between different graphs. Both measures are related to the size of the graph. It will be recalled, however, that the density level also depends on the type of relation that is being analysed. The density of an ‘awareness’ network, I suggested, will tend to be higher than that of a ‘loving’ network. Because both density and point centrality are computed from degree measures, exactly the same consideration applies to measures of point centrality. Centrality measured in a loving network, for example, is likely to be lower, other things being equal, than centrality in an awareness network. Relative measures of point centrality do little to help with this problem. Even if local centrality scores are calculated in relative terms, they should be compared only for networks that involve similar types of relations.
Local centrality is, however, only one way of measuring point centrality. Freeman (1979, 1980) proposed a measure of overall centrality, often called ‘global centrality’, based around what he terms the ‘closeness’ of the points. Local centrality measures, whatever path distance is used, are expressed in terms of the number or proportion of points to which a focal point is connected. Freeman’s measure of global centrality is expressed in terms of the distances among the various points. It will be recalled that two points are connected by a path if there is a sequence of distinct lines connecting them, and the length of a path is measured by the number of lines of which it is composed. In graph theory, the length of the shortest path between two points is a measure of the distance between them. The shortest distance between two points on the surface of the earth lies along the geodesic that connects them, and, by analogy, the shortest path between any chosen pair of points in a graph is termed a geodesic. A point is globally central if it lies at short distances from many other points. Such a point is ‘close’ to many of the other points in the graph. It has a position of strategic significance in the overall structure of the network.
The simplest notion of closeness is, perhaps, that calculated from the ‘sum distance’, the sum of the geodesic distances to all other points in the graph (Sabidussi, 1966). If the matrix of distances between points in an undirected graph is calculated, the sum distance of a point is its column or row sum in this matrix (the two values are the same). A point with a low sum distance is ‘close’ to a large number of other points, and so closeness can be seen as the reciprocal of the sum distance. In a directed graph, of course, paths must be measured through lines that run in the same direction, and, for this reason, calculations based on row and column sums will differ. Global centrality in a directed graph, then, can be seen in terms of what might be termed ‘in-closeness’ and ‘out-closeness’.
The table in Figure 6.1 compares a sum distance measure of global centrality with degree-based measures of absolute and relative local centrality. It can be seen that A, B and C are equally central in local terms, but that B is more globally central than either A or C. In global terms, G and M are less central than B, but more central than the locally central points A and C. These distinctions, made on the basis of the sum distances measure, therefore, confirm the impression gained from a visual inspection of the graph. This is also apparent in the measures for the less central points. All the remaining points have a degree of 1, indicating low local centrality, yet the sum distance measure clearly brings out the fact that J, K and L are more central in global terms than are the other points with degree 1.


Mediation and Betweenness
Freeman (1979) adds yet a further concept of point centrality, which he terms the ‘betweenness’. This measures the extent to which a particular point lies ‘between’ the various other points in the graph: a point of relatively low degree may play an important ‘intermediary’ role and so be very central to the network. Points G and M in Figure 6.1, for example, lie between a great many pairs of points. The betweenness of a point measures the extent to which an agent can play the part of ‘broker’ or ‘gatekeeper’, with a potential for control over others.2 G could, therefore, be interpreted as an intermediary between the set of agents centred around B and that centred around A, while M might play the same role for the sets associated with B and C.
Freeman’s approach to betweenness is built around the concept of ‘local dependency’. A point is dependent on another if the paths that connect it to others pass through this point. Burt (1992) has described this in terms of ‘structural holes’. A structural hole exists where two points are connected at distance 2, but are otherwise separated by a long path. The third point can act as a broker or intermediary that bridges the structural hole. In Figure 6.1, for example, point E is dependent on point A for access to all other parts of the graph, and it is also dependent, though to a lesser extent, on points G, B, M and C.
Betweenness is, perhaps, the most complex of the measures of point centrality to calculate. The ‘betweenness proportion’ of a point Y for a particular pair of points X and Z is defined as the proportion of geodesics connecting that pair that passes through Y: it measures the extent to which Y is ‘between’ X and Z.3 The ‘pair dependency’ of point X on point Y is then defined as the sum of the betweenness proportions of Y for all pairs that involve X. The ‘local dependency matrix’ contains these pair dependency scores, the entries in the matrix showing the dependence of each row element on each column element. The overall ‘betweenness’ of a point is calculated as half the sum of the values in the columns of this matrix, that is, half the sum of all pair dependency scores for the points represented by the columns. Despite this rather complex calculation, the measure is intuitively meaningful, and it is easily computed with the UCINET program, and in Pajek with the NET > VECTOR > CENTRALITY menu option.
In Freeman’s work, then, can be found the basis for a whole family of point centrality measures: local centrality (degree), betweenness, and global centrality (closeness). I have shown how comparability between different social networks can be furthered by calculating local centrality in relative rather than absolute terms, and Freeman made similar proposals for his other measures of centrality. He produced his own relative measure of betweenness, and used the formula of Beauchamp (1965) for a relative closeness measure. In UCINET these measures are calculated using the NETWORK > CENTRALITY > DEGREE, NETWORK > CENTRALITY > CLOSENESS and NETWORK > CENTRALITY > BETWEENNESS menu options. All these measures, however, are based on raw scores of degree and distance, and it is necessary to turn to Bonacich (1972, 1987) for an alternative approach that uses weighted scores.


Centrality Boosts Centrality
Bonacich holds that the centrality of a particular point cannot be assessed in isolation from the centrality of all the other points to which it is connected. A point that is connected to central points has its own centrality boosted, and this, in turn, boosts the centrality of the other points to which it is connected (Bonacich, 1972). There is, therefore, an inherent circularity involved in the calculation of centrality. According to Bonacich, the local centrality of point i in a graph, ci, is calculated by the formula ∑jrijcj, where rij is the value of the line connecting point i and point j and cj is the centrality of point j. That is to say, the centrality of i equals the sum of its connections to other points, weighted by the centrality of each of these other points.4
Bonacich (1987) has subsequently generalised his initial approach, as did Freeman, to a whole family of local and global measures. The most general formula for centrality, he argued, is ci = Σjrij(α + βcj). In this formula, the centrality weighting is itself modified by the two parameters α and β. The parameter α is introduced simply as an arbitrary standardising constant which ensures that the final centrality measures will vary around a mean value of 1. The parameter β, on the other hand, is of more substantive significance. It is a positive or negative value that allows the researcher to set the path distances that are to be used in the calculation of centrality.5 When β is set as equal to zero, no indirect links are taken into account, and the measure of centrality is a simple degree-based measure of local centrality. Higher levels of β increase the path length, so allowing the calculation to take account of progressively more distant connections. Bonacich claims that measures based on positive values of β correlate highly with Freeman’s measure of closeness.
A major difficulty with Bonacich’s argument, however, is that the values given to β are arbitrary choices made by researchers. It is difficult to know what theoretical reasons there might be for using one β level rather than another. While the original Bonacich measure may be intuitively comprehensible, the generalised model is more difficult to interpret for values of β that are greater than zero. On the other hand, the suggestion that the value of β can be either positive or negative does provide a way forward for the analysis of signed graphs. Bonacich himself suggests that negative values correspond to ‘zero-sum’ relations, such as those involved in the holding of money and other financial resources. Positive values, on the other hand, correspond to ‘non-zero-sum’ relations, such as those involving access to information.
I have discussed centrality principally in terms of the most central points in a graph, but it should be clear that centrality scores also allow the least central points to be identified. Those points with the lowest centrality, however this is measured, can be regarded as the peripheral points of the graph. This is true, for example, for all the points in Figure 6.1 that have degree 1. They are locally peripheral in so far as they are loosely connected into the network. The global centrality scores in Figure 6.1, however, show that points J, K and L are not as globally peripheral as the other points with degree 1. The extreme of peripherality occurs with the isolated point, the point that has no connections with any other point in the network.


Centralisation and Graph Centres
I have concentrated, so far, on the centrality of particular points. But it is also possible to examine the extent to which a whole graph has a centralised structure. Centrality and ‘centralisation’ of a graph have sometimes been confused by the use of the same term to describe them both. Freeman’s important and influential (1979) study, for example, refers to both ‘point centrality’ and ‘graph centrality’. Confusion is most likely to be avoided if the term ‘centrality’ is restricted to the idea of point centrality, and the term ‘centralisation’ is used to refer to particular properties of the graph structure as a whole. Centralisation, therefore, refers not to the relative prominence of points, but to the overall cohesion or integration of the graph around a particular set of points. Graphs may, for example, be more or less centralised around particular points or sets of points. A number of different procedures have been suggested for the measurement of centralisation, contributing further to the confusion that besets this area. The concepts of density and centralisation refer to differing aspects of the overall ‘compactness’ of a graph. Density describes the general level of cohesion in a graph; centralisation describes the extent to which this cohesion is organised around particular focal points. Centralisation and density, therefore, are important complementary measures.
Figure 6.2 shows a simplified model of a highly centralised graph: the whole graph is organised, in important respects, around point A as its focal point. How is this level of centralisation to be measured? Freeman (1979) has shown that measures of point centrality can be converted into measures of the overall level of centralisation found in different graphs. A graph centralisation measure is an expression of how tightly the graph is organised around its most central point. Freeman’s measures of centralisation are attempts to isolate the various aspects of the simplified notion of centralisation. On this basis, he identified three types of graph centralisation, rooted in the varying conceptions of point centrality already defined.
The general procedure involved in any measure of graph centralisation involves looking at the differences between the centrality scores of the most central point and those of all other points. Centralisation, then, is the ratio of the actual sum of differences to the maximum possible sum of differences. The three different ways of operationalising this general measure that Freeman discusses follow from the use of one or other of the three concepts of point centrality. Freeman (1979) shows that all three measures vary from 0 to 1 and that a value of 1 is achieved on all three measures for graphs structured in the form of a ‘star’ or ‘wheel’. He further shows that a value of 0 is obtained on all three measures for a ‘complete’ graph. Between these two extremes lie the majority of graphs for real social networks, and it is in these cases that the choice of one or other of the measures will be important in illuminating specific structural features of the graphs. A degree-based measure of graph centralisation, for example, seems to be particularly sensitive to the local dominance of points, while a betweenness-based measure is rather more sensitive to the ‘chaining’ of points.
More usefully, Everett and Borgatti (1999, 2005) have shown how Freeman’s measures of point centrality can be extended to an analysis of the centrality of sets of points. Whether defined by a particular attribute (gender, age, ethnicity, etc.) or by the sociometric criteria discussed in the following chapters, the centrality of a category or group cannot be calculated simply by adding or averaging individual scores because of the need to take account of group size. The way that this must be achieved varies from measure to measure. Everett and Borgatti argue that a degree-based measure of centrality comprises the number of points outside the group that are connected to its members, normalised by the total number of points outside the group. This measure allows centrality to be compared across networks of varying sizes. A more complex measure of group centrality is that based on closeness, which it will be recalled is a measure in which low numbers indicate high levels of closeness. Everett and Borgatti argue that in this case, normalised group closeness is the total number of network members outside the group divided by the summed closeness for group members. Finally, a betweeness-based measure of group centrality takes the summed betweenness and divides by half the maximum possible number of connections. The authors of these measures conclude that they provide useful assessments of the social capital of a group, as opposed to the social capital of its individual members.
Figure 6.2 A highly centralised graph
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Assessing the centralisation of a graph around a particular focal point or a defined set of points is the starting point for a broader understanding of centralisation. The measures of centralisation discussed can tell us whether a graph is organised around its most central points or a defined set of points, but they do not tell us whether these central points comprise a distinct set of points that themselves cluster together in a particular part of the graph. The points in the graph that are individually most central, for example, may be spread widely through the graph, and in such cases a measure of centralisation might not be especially informative. It is necessary, therefore, to investigate whether there is an identifiable ‘structural centre’ to a graph. The structural centre of a graph is a single point or a cluster of points that, like the centre of a circle or a sphere, is the pivot of its organisation.
An approach to this issue has been outlined by Stokman and Snijders.6 Their approach is to define the set of points with the highest point centrality scores as the ‘centre’ of the graph. Having identified this set, researchers can then examine the structure of the relations between this set of points and all other points in the graph. A schematic outline of the Stokman and Snijders approach is shown in Figure 6.3.
If all the points in a graph are listed in order of their point centrality – Stokman and Snijders use local centrality – then the set of points with the highest centrality scores are the centre. The boundary between the centre and the rest of the graph is drawn wherever there appears to be a ‘natural break’ in the distribution of centrality scores. The decrease in the centrality score of each successive point may, for example, show a sharp jump at a particular point in the distribution, and this is regarded as the boundary between the centre and its ‘margin’. The margin is the set of points that clusters close to the centre and that is, in turn, divided from the ‘peripheral’ points by a further break in the distribution of centrality scores.
The Stokman and Snijders concept applies only to highly centralised graphs. In a graph such as that in Figure 6.2, which is centralised around a particular set of central points, as measured by one of Freeman’s indicators, it may be very informative to try to identify the sets defined by Stokman and Snijders. There will, however, be an inevitable arbitrariness in identifying the boundaries between centre, margin and periphery. The location of the boundaries cannot be determined with any precision, as it depends on the identification by the analyst of ‘breaks’ in the distribution of scores. Indeed, the number of boundaries identifiable is a matter of researcher judgement. The attempt to identify central and peripheral sets of points in a network is, however, an important analytical device in describing network structure. A solution to these problems, though not one pursued by Stokman and Snijders, is to use a clique or cluster analysis to identify the boundaries of the structural centre: if the most central points, for example, constitute a clearly defined and well-bounded ‘clique’, as discussed in Chapter 7, then it may make sense to regard them as forming the structural centre of the graph.7 But not all graphs will have such a hierarchical structure of concentric sets. Where the central points do not cluster together as the nucleus of a centralised graph, the Stokman and Snijders ‘centre’ will constitute simply a set of locally central, though dispersed, points. In such circumstances, it is not very helpful to use the term ‘centre’.
An alternative approach to centralisation is that of Borgatti and Everett (1999; Everett and Borgatti, 2005), who have derived ways of identifying a centre and a periphery in any network.8 Their method, implemented in UCINET, computes the ‘concentration’ of each point in relation to maximum centrality and progressively increases the size of the centre until the maximum possible concentration score is reached. This procedure dichotomises the network into a connected centre and a surrounding periphery of points that are less well connected to the central points.
Figure 6.3 The structural centre of a graph
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The Absolute Centre of a Graph
It is possible to extend the analysis of centralisation a little further by considering the possibility that there might be an ‘absolute centre’ to a graph. The idea of an absolute centre is based on the idea of the centre of a circle or a sphere: it is the focal point around which the graph is structured. The structural centre, as a set of points, does not meet this criterion. The absolute centre must be a single point. The centre of a circle, for example, is that unique place that is equidistant from all points on its circumference. By strict analogy, the absolute centre of a graph ought to be equidistant from all points in the graph. This idea is difficult to operationalise for a graph, and a more sensible idea would be to relax the criterion of equidistance and to use, instead, the idea of minimum distance. That is to say, the absolute centre is the point that is ‘closest’ to all the other points in terms of path distance.
Christofides (1975: Ch. 5) has suggested using the distance matrix to conceptualise and compute the absolute centre of a graph. The first step in his argument follows a similar strategy to that used by Freeman to measure ‘closeness’. Having constructed a distance matrix, which shows the shortest path distances between each pair of points, he defines the ‘eccentricity’, or ‘separation’, of a point as its maximum column (or row) entry in the matrix.9 The eccentricity of a point, therefore, is the length of the longest geodesic incident to it. Christofides’s first approximation to the idea of absolute centrality is to call the point with the lowest eccentricity the absolute centre. Point B in sociogram (i) of Figure 5.6 has an eccentricity of 1, and all the other points in the graph have eccentricity 2. In this sociogram, then, point B, with the lowest eccentricity, is the absolute centre and was referred to as such in Chapter 5.10 In other graphs, however, there may be no single point with minimum eccentricity. There may be a number of points with equally low eccentricity, and in these circumstances a second step is needed.
This second step in the identification of the absolute centre involves searching for an imaginary point that has the lowest possible eccentricity for the particular graph. The crucial claim here is that, while the absolute centre of a graph will be found on one of its constituent paths, this place may not correspond to any actual point in the graph. Any graph will have an absolute centre, but in some graphs this centre will be an imaginary rather than an actual point. It is a virtual centre.
This claim is not as strange as it might at first seem. All the points in sociogram (ii) in Figure 5.6 have eccentricity 2, and so all are equally ‘central’. It is possible, however, to conceive of an imaginary point, Z, mid-way between points A and B, as in sociogram (iii). ‘Point’ Z is distance 0.5 from both A and B, and it is distance 1.5 from points C, D and E. The artificial point Z is more central than any of the actual points, as its eccentricity is 1.5. But it is still not possible to find a single absolute centre for this sociogram. The imaginary point Z could, in fact, have been placed at the mid-point of any of the lines in the sociogram with the same results, and there is no other location for the imaginary point that would not increase its minimum eccentricity. The best that can be said for this graph, therefore, is that there are six possible locations for the absolute centre, none of which corresponds to an actual point. Moving to the second step of searching for an imaginary point as the absolute centre, then, will reduce the number of graphs for which there is no unique absolute centre, but it does not ensure that a single absolute centre can be identified for all graphs.11
Thus, some graphs will have a unique absolute centre, while others will have a number of absolute centres. Christofides provides an algorithm that would identify, through iteration, whether a graph contains a mid-point or actual point that is its unique absolute centre.12 In sociogram (iv) of Figure 5.6, for example, there is a unique absolute centre. Its ‘point’ Z has an eccentricity of 1.5, compared with eccentricity scores of 2.5 for any other imaginary mid-point, 2 for points A and B, and 3 for points C, D, E, F and G. Alternative approaches to identifying the absolute centre of a graph depend upon the spatial models of network structure discussed in Chapter 10.


Bank Centrality in Corporate Networks
Studies of interlocking directorships among corporate enterprises are far from new, but most of the studies carried out prior to the 1970s made little use of the formal techniques of social network analysis. Despite some limited use of density measures and cluster analysis, most of these studies took a strictly quantitative approach, simply counting the numbers of directorships and interlocks among the companies. Levine’s influential (1972) paper marked a shift in the direction of this research while, at about the same time, Mokken and his associates in the Netherlands began a pioneering study in the systematic use of graph theory to explore corporate interlocks (Helmers et al., 1975). The major turning point, however, occurred in 1975, when Michael Schwartz and his students presented a major conference paper that applied the concept of centrality to corporate networks (Bearden et al., 1975). This long paper was circulated widely in cyclostyled form and, despite the fact that it was unpublished until 2002, it has been enormously influential. The work of Schwartz’s group, and that which it has stimulated, provides a compelling illustration of the conceptual power of the idea of point centrality.
Michael Schwartz and Peter Mariolis had begun to build a database of top American companies during the early 1970s, and their efforts provided a pool of data for many subsequent studies (see, for example, Mariolis, 1975; Sonquist and Koenig, 1975). They gradually extended the database to include the top 500 industrial and the top 250 commercial and financial companies operating in the United States in 1962, together with all new entrants to this ‘top 750’ for each successive year from 1963 to 1973. The final database included the names of all the directors of the 1,131 largest American companies in business during the period 1962–73: a total of 13,574 directors. This database is, by any standard, for a large social network. As such, it lends itself to the selection of substantial subsets of data for particular years. One such subset is the group of the 797 top enterprises of 1969 studied by Mariolis (1975).
The path-breaking paper of Schwartz and his colleagues (Bearden et al., 1975) drew on the Schwartz–Mariolis database and analysed the data using Granovetter’s (1973) conceptual distinction between strong and weak ties. The basis of their argument was that those interlocks that involved the full-time executive officers of the enterprises could be regarded as the ‘strong’ ties in the corporate network, while those that involved only the part-time non-executive directors were its ‘weak’ ties. The basis of this theoretical claim was that the interlocks carried by full-time executive officers were the most likely board-level links to have a strategic salience for the enterprises concerned. For this reason, they tended to be associated with intercorporate shareholdings and trading relations between the companies.13 Interlocks created by non-executive directors, on the other hand, involved less of a time commitment and so had less strategic significance for the enterprises concerned.
The top enterprises were examined for their centrality, using Bonacich’s (1972) measure. This, it will be recalled, is a measure in which the centrality of a particular point could be measured by a combination of its degree, the value of each line incident to it, and the centrality of the other points to which it is connected. This is a ‘recursive’, circular measure that, therefore, requires a considerable amount of computation. A network containing 750 enterprises, for example, will require the solution of 750 simultaneous equations. The first step in Bearden et al.’s analysis was to decide on an appropriate measure for the value of the lines that connected the enterprises. For the weak, undirected lines, they hold that the value of each should be simply the number of separate interlocks, weighted by the sizes of the two boards. This weighting rested on the supposition that having a large number of interlocks was less significant for those enterprises with large boards than it was for those with small boards. The formula used in the calculation was 
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, where bij is the number of interlocks between the two companies i and j, and di and dj are the sizes of their respective boards. This formula allows Bonacich’s centrality measure to be calculated on the basis of all the ‘weak ties’ in the graph.
A more complex formula was required to measure centrality in terms of the strong ties. In this case, the measure of the value of each line needed to take some account of the direction attached to the lines in the graph. For those companies that were the ‘senders’ of lines, the value of the lines was calculated by the number of directors ‘sent’, weighted by the board size of the ‘receiving’ company. The attempt in this procedure was to weight the line by the salience of the interlock for the receiving board. Conversely, for those companies that were the ‘receivers’ of interlocks, the number of directors received was weighted by the sender’s board size.14 For the final calculation of centrality scores, Bearden et al. introduced a further weighting. Instead of taking the raw weighted scores, they took 90 per cent of the score for the senders and 10 per cent of the score for the recipients. The reasoning behind this weighting of the scores was the theoretical judgement that, in the world of corporate interlocking, it is ‘more important to give than to receive’: the sending of a director was more likely to be a sign of corporate power than was the receiving of a directorship. Thus, the arbitrary adjustment to the centrality scores was introduced as a way of embodying this judgement in the final results. It should be noted, however, that centrality will not always be a sign of power. In some situations, the prominent and most visible actors may be among the weakest (Mizruchi, 1994: 331–2).
The Bonacich measure of centrality that was calculated for the companies in the study correlated very highly, at 0.91, with the degrees of the companies. Bearden et al. hold, however, that the more complex Bonacich measure was preferable because it had the potential to highlight enterprises with a low degree but that were, nevertheless, connected to highly central companies. Such a position, they argued, may be of great importance in determining the structural significance of the companies in the economy.
Schwartz and his colleagues also used a further approach to centrality, which they termed ‘peak analysis’. This was later elaborated by Mizruchi (1982) as the basis for an interpretation of the development of the American corporate network during the twentieth century. A point is regarded as a ‘peak’ if it is more central than any other point to which it is connected. Mintz and Schwartz (1985) extend this idea by defining a ‘bridge’ as a central point that connects two or more peaks (see Figure 6.4). They further see a ‘cluster’ as comprising all the direct contacts of a peak, except for those that have a similar distance 1 connection to another peak. Thus, peaks lie at the hearts of their clusters.15

Figure 6.4 Peaks and bridges
[image: Figure 25]
The results arrived at through the use of these techniques for the measurement of point centrality have become widely accepted as indicating some of the most fundamental features of intercorporate networks. In summary, Bearden et al. argue that the American intercorporate network shows an overall pattern of ‘bank centrality’: banks are the most central enterprises in the network, whether measured by the strong or the weak ties. Bank centrality is manifest in the co-existence of an extensive national interlock network (structured predominantly by weak ties) and intensive regional groupings (structured by the strong ties). Strong ties had a definite regional base to them. The intensive regional clusters were created by the strong ties of both the financial and the non-financial enterprises, but the strong ties of the banks were the focal centres of the network of strong ties. The intercorporate network of 1962, for example, consisted of one very large connected component,16 two small groupings each of four or five enterprises, and a large number of pairs and isolated enterprises. Within the large connected component, there were five peaks and their associated clusters. The dominant element in the network of strong ties was a regional cluster around the Continental Illinois peak, which, with two other Chicago banks, was connected with a group of 11 Midwestern enterprises with extensive connections to a larger grouping of 132 enterprises. The remaining four peaks in the network of strong ties were Mellon National Bank, J.P. Morgan, Bankers Trust and United California Bank, their clusters varying in size from four to ten enterprises.
Overlying this highly clustered network of strong, regional ties was an extensive national network created by the weak ties that linked the separate clusters together. This national network, Bearden et al. argue, reflects the common orientation to business affairs and similarity of interests that all large companies share. Interlocks among the non-executive directors express this commonality and generate integration, unity and interdependence at the national level (see also Useem, 1984). The great majority of the enterprises were tied into a single large component in this network, most of the remainder being isolates. Banks are, once more, the most central enterprises, especially those New York banks that play a ‘national’ rather than a ‘regional’ role. It is the non-executive directors of the banks who cement together the overall national network.17
This picture has been slightly modified in more recent discussions of the transnational centralisation of corporate networks. A pioneering study by Fennema (1982) showed that interlocks in 1976 were largely fragmented along geographical and linguistic lines. Although bank centrality was apparent within each of the national economies studied (see Stokman et al., 1985), there was no overall centralisation of the international network and no particular enterprises occupied central positions at a global level. The development of a more extensive and intensive globalisation of economic relations since the time of that study has increased the number of transnational links and transformed the position of banks in the transnational network. National economies became more fragmented and those banks that had transnational operations tended to increase their centrality within their national economies (Carroll, 2002, 2004). Sklair (2001) has suggested that a transnational capitalist class has developed, while Bauman (1998) has suggested the emergence of global financial decision-makers detached from national commitments. It appears, however, that the extent of transnational integration at board level has been considerably exaggerated (Carroll and Fennema, 2002).

Exercise
Regarding the intercorporate network for 1962 discussed above, consider the following questions:
Is it correct to see interlocks as power relations? Why is this?Do the network data provide any evidence to support the claim that bank centrality is an indicator of bank power?What additional evidence might be needed to strengthen this claim?
Imagine a network of friendship choices with a similar pattern of centrality.
Can the friendship relations be seen as indicators of popularity?How would you interpret the social significance of the most central individuals?How would your interpretation vary with the use of different measures of centrality?If a structural centre could be identified in the friendship network, how would you interpret its reality as a social group?
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