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 Sociometry
 1977, Vol. 40, No. 1, 35-41

 A Set of Measures of Centrality

 Based on Betweenness

 LINTON C. FREEMAN
 Lehigh University

 A family of new measures of point and graph centrality based on early intuitions of Bavelas
 (1948) is introduced. These measures define centrality in terms of the degree to which a point
 falls on the shortest path between others and there fore has a potential for control of
 communication. They may be used to index centrality in any large or small network of
 symmetrical relations, whether connected or unconnected.

 The recent article by Moxley and Moxley
 (1974) raised an important problem with
 respect to the measurement of centrality in
 social networks. The Moxleys were concerned
 with measuring centrality in the large, often
 unconnected, networks encountered in natur-
 al settings. The problem, as they defined it,
 was that the classical centrality measures of
 Bavelas (1950), Beauchamp (1965) and
 Sabidussi (1966) could not be used for
 unconnected networks. In each of these
 measures, the centrality of a point is a
 function of the sum of the minimum distances
 between that point and all others. Since all
 distance sums are infinite in unconnected
 networks; these measures are useful only in
 settings where connectivity can be assured.

 The Moxleys' proposed solution for this
 problem was both arbitrary and ad hoc. They
 suggested that unconnected points be connec-
 ted by an imaginary path with a length greater
 than that linking any pair of connected points
 in the network. The result is a crude ranking
 of the centrality of points and no index
 whatsoever of the overall centrality of the
 entire network. Moreover, since the rankings
 themselves are an artifact of a series of
 nonexistent connections, it is difficult to
 imagine what they might mean in terms of
 human communication.

 The purpose of the present paper is to
 propose an alternative and more satisfactory
 solution to the problem posed by Moxley and
 Moxley. A new set of centrality measures will
 be introduced. They are based on the
 intuitions of Bavelas (1948) and others who
 originally used the centrality concepts in the
 context of the study of human communica-
 tion. Here an attempt will be made to stick

 rather closely to these original ideas and to
 generate measures that are meaningful in
 communication terms.

 POINT CENTRALITY: INTUITIVE BACKGROUND

 The earliest intuitive conception of point
 centrality in communication was based upon
 the structural property of betweenness.
 According to this view, a point in a
 communication network is central to the
 extent that it falls on the shortest path
 between pairs of other points. This idea of
 point centrality was introduced by Bavelas
 (1948) in his first paper on the subject. He
 suggested that when a particular person in a

 group is strategically located on the shortest
 communication path connecting pairs of
 others, that person is in a central position.
 Other members of the network were assumed
 to be "responsive" to persons in such central
 positions who could influence the group by

 "withholding information (or) coloring or
 distorting it in transmission."

 This same intuition was expressed by
 Shimbel (1953) who put it in quite different
 terms:

 "Suppose that in order for site i to contact
 site j, site k must be used as an
 intermediate station. Site k in such a
 network has a certain 'responsibility' to
 sites i and j.

 If we count all of the minimum paths
 which pass through site k, then we have a
 measure of the 'stress' which site k must
 undergo during the activity of the network.
 A vector giving this number for each
 number of the network would give us a
 good idea of stress conditions throughout
 the system."

 35
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 36 SOCIOMETRY

 Shaw (1954), however, returned to Bave-
 las' mode of expression. He said:

 "The relayer has it in his power to
 withhold information .., or to refuse to
 pass on requests for information."

 Such power, according to Shaw depends
 upon:

 ". . . the number of positions for which a
 given position serves as a relayer of
 information."

 A somewhat different image of the same
 idea was employed by Cohn and Marriott
 (1958). They defined centers as the "nexes"
 that "bind and intertwine" the strands of
 networks and thus, it would seem, stand

 between other points. But instead of talking
 about blocking or distorting messages or

 stress, Cohn and Marriott emphasized the
 potential of such central points for binding
 the network together by coordinating the
 activities of other points.

 Regardless of the imagery chosen, the
 importance of this conception of point
 centrality is in the potential of a point for
 control of information flow in the network.
 Positions are viewed as structurally central to
 the degree that they stand between others and
 can therefore facilitate, impede or bias the
 transmission of messages.

 MEASURING POINT CENTRALITY

 Although earlier intuitive statements con-
 ceived of point centrality in terms of
 betweenness, measures based on this concept
 have not been reported. Shaw (1954) included
 betweenness counts in a more complex
 measure, but provided no general procedures
 for measuring it. Such measurement, however,
 is rather straightforward.

 Consider an unordered pair of points, { pi,
 pj }, (i # j). Either pi and pj are unreachable
 from one another or there are one or more
 paths between them. In the latter case, each
 of the paths has a length equal to the number
 of edges contained in it.

 Among the paths connecting Pi and pj one
 or more have the shortest length: the

 geodesics. Moreover, if pj is directly con-
 nected to pi by an edge-if they are
 adjacent-there is only one geodesic (of length
 one) between them. If, however, a single
 geodesic connecting Pi and pj has a length
 greater than one, other points fall on the path

 between pi and pj.
 A point is considered to be central here to

 the degree that it falls between other points
 on their shortest or geodesic communication

 paths. A point falling between two others can
 facilitate, block, distort or falsify communica-
 tion between the two; it can more or less
 completely control their communication. But
 if it falls on some but not all of the geodesics
 connecting a pair of points, its potential for
 control is more limited.

 As an example consider the graph shown in

 Figure 1. There are two geodesics linking PI
 with p3, one via P2 and one via p4. In such a
 case neither P2 nor p4 is between PI and p3
 in the strict graph theoretic sense and neither
 can totally control communications between
 these latter points. Both P2 and p4, however,
 may be viewed as having some potential for
 control.

 P3

 P2 P4

 p1

 FIGURE 1
 A Graph with Four Points and Five Edges

 All this suggests that we need to generalize
 the graph theoretical notion of betweenness.
 Given a point, Pk. in a graph and an

 unordered pair of points, I Pi, pj } where i # i
 # k, we can define the partial betweenesss, bij
 (Pk), of Pk with respect to (pi, pj) in the
 following way.

 If Pi and pj are not reachable from each
 other, Pk is not between them, so in that case
 let

 bij (Pk) = 0.

 If Pi and pj are reachable, assume that they
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 MEASURES OF CENTRALITY 37

 are indifferent with respect to the routing of
 their communication among alternative geo-
 desics. Thus, the probability that a message
 passes along any particular geodesic among
 alternatives is equal to

 aij

 where gij = the number of geodesics linking

 Pi and p-. The potential of point Pk for
 control information passing between Pi and

 pj then may be defined as the probability that
 Pk falls on a randomly selected geodesic
 connecting pi and pj. If gij (Pk) = the
 number of geodesics linking pi and pj that
 contain Pk, then

 j (Pk) = (-i-) ( Pk)

 gi (Pk)

 = gj

 is the probability we seek. bij (Pk) is the
 probability that point Pk falls on a randomly
 selected geodesic linking pi with pj.

 In the illustration from Figure 1, P2 and p4
 each have a probability of 1/2 of falling
 between P1 and p3. In general, if Pk falls on
 the only geodesic between pi and pj or if Pk
 falls on all the geodesics linking Pi and pj,
 then bij (Pk) = 1. In these cases Pk can control
 communication because it is a necessary link

 between Pi and pj.
 To determine the overall centrality of a

 point, Pk, we need merely to sum its partial
 betweenness values for all unordered pairs of
 points where i # j # k:

 n n

 CB (Pk) = Y Y bij (0,
 i <i

 where n = the number of points in the graph.
 The sum, CB (Pk), is an index of the overall

 partial betweenness of point Pk. Whenever Pk
 falls on the only geodesic connecting a pair of
 points, CB (Pk) is increased by 1. When there
 are alternative geodesics, CB (Pk) is increased
 in proportion to the frequency of occurrence

 of Pk among those alternatives.
 Both locating and counting geodesics

 become tedious and difficult as the networks
 increase in size. Fortunately, however, matrix
 methods for both of these tasks are detailed in

 Harary et al. (1965:134-141). They are based
 in part upon an algorithm derived by Flament

 (1963) for finding the set of all geodesics
 connecting a pair of points. These methods
 permit the development of a simple computer

 program to calculate CB (Pk)-
 CB (Pk) indexes the potential of a point

 for control by counting its opportunities for
 control. It is the simplest and in many cases
 probably the most useful betweenness-based
 measure of centrality.

 Since CB (Pk) is essentially a count, its
 magnitude depends upon two factors: (1) the
 arrangement of edges in the graph that define

 the location Of Pk with respect to geodesics
 linking pairs of points; and (2) the number of
 points in the graph. Leavitt (1951) argued
 that for certain classes of substantive prob-
 lems it is desirable to create a measure that
 eliminates the impact of the number of points
 from the measure.

 Consider, for example, a point Pi in a graph
 containing five points. Let us say Pi has a

 value, CB (pi) = 6. On the other hand, assume
 a point, pj, in a graph of 25 points where CB
 (pj) = 6. Both Pi and pj have the same
 potential for control in absolute terms-they
 can facilitate or inhibit the same number of
 communications. However, they differ mark-
 edly in their relative potential for control
 within their respective networks. pi can
 dominate more than half of the communica-
 tions between pairs of points in its graph,

 while pj can control only slightly more than
 one percent. To the degree that this potential
 for control is perceived as relative by

 participants in networks, Pi and pj are in quite
 different positions with respect to centrality.
 What is needed in this context is a measure
 that is relative to its maximum value in terms
 of the number of points in the graph.

 Consider S, a totally disconnected graph
 with n = the number of points (n>3) and m =
 0, the number of edges. For such a graph let r

 = 0, the number of unordered pairs, I Pi, Pj },
 where Pi and pj are mutually reachable, and
 CB (Pk) = 0, the centrality index of a point,
 Pk.

 Now if we add an edge to S, m = 1 and r =
 1, but still CB (Pk) = 0, since with only one
 edge, no point can fall on a path between any
 others.
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 38 SOCIOMETRY

 However, when we add a second edge and
 let m = 2, it can be added either such that r =
 3 and CGB (Pk) = 1 for a point if there is a
 connection with the previous edge as in Figure

 2, or such that r = 2 and CGB (Pk) = 0 for all
 points as in Figure 3. Figure 2, then, shows a

 point, Pk, that falls on a path between Pi and
 pj; this is the most central graph possible with
 m = 2.

 Ph

 Pi Pk Pa

 FIGURE 2

 A graph with n = 4, m = 2, r =3 and CB (pk) =1

 Ph Pi

 Pj Pk

 FIGURE 3
 A graph with n = 4, m = 2, r = 2, and CB (Pk) = 0

 When successive new edges are added,
 maximum centrality is maintained only if all
 new edges are connected to the previous
 center point, Pk. This will be true until there
 are n -1 edges linking Pk with every other
 point in S. Under these conditions each point
 is reachable from all others either directly (in
 the case of Pk itself) or through Pk; S is
 connected.

 Since all points are reachable there are n (n
 -1)/2 paths connecting the unordered pairs in
 S. Of these n - 1 are connected to Pk so the
 number of paths connecting pairs of points
 where Pk falls on the path between them is

 [n (n-1 )]

 C (Pk)- 2 - -In-I1]

 n-2- 3n + 2

 2 O

 Any new edge added to S after this stage
 must directly link two points that previously
 were connected only through Pk. Each new
 edge will, therefore, define a new geodesic
 that will reduce C (Pk) by one. Thus,
 maximum point centrality can be obtained

 only when the number of edges equals n -1
 and there exists a point, Pk, that falls on all
 geodesics of length greater than one. Such a
 graph is called a star or wheel (see Figure 4),
 and it defines the upper limit of C (Pk) as

 n2 - 3n + 2
 max CB (POk) = 2

 2

 The relative centrality of any point in a
 graph, then, may be expressed as a ratio,

 2CB (Pk)

 C'B (0 )=n23n+2

 FIGURE 4
 Graphs of Stars or Wheels for n = 3, 4, 5, 6, 7

 Values of Cj (Pk) may be compared between
 graphs. A wheel, for example, of any size will
 have a center point with Cj (Pk) = 1; all other
 points will yield Cj (Pk) = 0.

 Both CB (Pk) and C' (Pk) may be
 determined for any symmetric graph whether
 connected or not. Thus, these measures solve
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 MEASURES OF CENTRALITY 39

 the problem raised by Moxley and Moxley
 (1974) of determining the centrality of points
 in unconnected graphs. Moreover, both
 measures take their maximum values only for
 points that are the centers of stars or the hubs
 of wheels like those shown in Figure 4. In the

 relative measure, CBg (Pk), all other points are
 scored as they compare with these maxima.

 MEASURING GRAPH CENTRALITY

 There are two distinct views on the
 meaning of the term centrality when it refers
 to a property of a whole network or graph.
 One of these, apparently based on graph
 theory, views a graph as exhibiting centrality
 to the degree that all of its points are central.
 Measures of this sort have been defined by
 Bavelas (1950) and Beauchamp (1965). They
 have limited utility and may be applied only
 to problems like the design of maximally
 efficient communication networks.

 The alternative view leads to the develop-
 ment of measures of graph centrality based
 upon the dominance of one point. In this
 conception, a network is central to the degree
 that a single point can control its communica-
 tion. Measures based upon this idea have been
 introduced by Leavitt (1951), Mackenzie
 (1966a) and Nieminen (1973, 1974). They
 turn out to be related empirically to a wide
 range of behavioral characteristics of com-
 municating groups including perception of
 leadership, frequency of error, rate of activity,
 speed of organization and personal satisfac-
 tion or morale (Leavitt, 195 1).1

 What is needed here is a graph centrality
 measure of the second, more general, type. We
 can define Cj (Pk*) as the largest centrality
 value associated with any point in the graph
 under investigation.

 Then a natural measure of the dominance of

 the most central point is

 B (Pk*) B 1
 r i = I

 CB= n-

 'In his earlier paper, Nieminen (1973) added a
 weighting factor to his index of point dominance.
 This created a cumbersome measure, difficult to
 interpret, which resulted in a breakdown in the
 ability of his index to forecast empirical results. This
 problem was, however, eliminated in his subsequent
 paper (1974).

 which is the average difference in centrality
 between the most central point and all others.
 Cj varies between 0 and 1. Its value is 0 for
 all graphs of any size where the centralities of
 all points are equal. Its value is 1 only for the
 wheel or star. Thus C'B is an expression of
 Mackenzie's prescription that:

 "A communication network is considered
 structurally centralized to the degree that
 the network approaches that of a wheel
 network and decentralized to the degree
 that the graph is an all-channel [com-
 plete] " ( 1 966a).

 USING THE BETWEENNESS-BASED MEASURES

 The original application of the centrality
 idea was in the study of communication in
 small groups. Bavelas (1950), Leavitt (1951),
 Shaw (1954) and Goldberg (1955) all
 reported studies of speed, activity and
 efficiency in solving problems and personal
 satisfaction and leadership in small group
 settings. All of these variables were demon-
 strated to be related to centrality in some
 way.

 More recently, the range of applications
 has been extended. Pitts (1965) examined the
 impact of centrality on urban growth. Czepiel
 (1974) used the concept in the study of the
 diffusion of a technological innovation in the
 steel industry. Rogers (1974) studied the
 emergence of two kinds of centrality in
 interorganizational relations. Cohn and Mar-
 riott (1958) used the idea in an attempt to
 explain political integration in Indian civiliza-
 tion. Both Beauchamp (1965) and Mackenzie
 (1966b) employed the concept of centrality
 in discussing the design of organizations.
 These several studies used perhaps a dozen
 different measures of centrality. While many
 were related, it is clear that there is little
 consensus on the solution to the problem of
 measuring centrality. Where, then, do three
 new measures fit into this picture?

 The three measures, CB (Pk), CBj (Pk.) and
 CB are more generally applicable than most of
 the alternatives. As has been illustrated, they
 are not limited to use in connected networks.
 The important question in considering appli-
 cations-and the one that is most often
 neglected-involves considering the relevance
 of the particular structural attribute measured
 to the substantive problem being studied.

 Thus, the use of these three new measures
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 40 SOCIOMETRY

 is appropriate only in networks where
 betweenness may be viewed as important in

 its potential for impact on the process being

 examined. Their use seems natural in the
 study of communication networks where the
 potential for control of communication by
 individual points may be substantively rele-
 vant.

 Consider, for example, the relationship
 between point centrality and personal satisfac-
 tion in Leavitt's (1951) study of small group
 problem solving. Each participant had a piece
 of information necessary for the solution of a
 problem. Each could communicate only with
 designated others, and the problem could be
 solved only when all information was pooled.

 Leavitt measured point centrality as a

 function of the lengths of paths or the
 distance between points. However, there is no
 reason to suspect that path length has any

 primary relationship with personal satisfaction

 in a task of this sort. There is no reason to
 believe that participants would be aware of, or
 even interested in, the distance between self

 and all other participants. On the other hand,
 participants cannot help but be sensitive to

 their roles as relayers or coordinators of
 information vital to the solution of the
 problem. To the degree that each stands

 between others, passes messages and thereby
 gains a sense of importance in contributing to
 a solution, he or she can be expected to be
 satisfied; the greater the betweenness, the
 greater his or her sense of participation and
 potency.

 For the networks studied by Leavitt,

 however, path length and betweenness were
 highly related. To the degree that they are
 related, path length might also be expected to
 be related to satisfaction, but only as an
 artifact of the primary relationship. This
 seems to be true for the Leavitt data. Shaw
 (1954) has pointed out that the relationship
 between personal satisfaction and Leavitt's
 centrality index based on path length is not
 monotone. The relationship between personal

 satisfaction and CB (Pk.) however, is.
 These relationships, shown in Figure 5,

 suggest that CB (Pk) seems to be the better
 measure in this application and that the
 reasoning outlined above may be correct.

 In any case, this illustrates the sort of
 reasoning that should be employed in
 selecting a centrality measure. The family of
 betweenness-based centrality measures intro-

 80 80

 -o40/ 40

 20 20

 0 0

 0 2 4 6 8 0 2 4 6
 Leavitt s Point Centrality Index Cb (Pk)

 FIGURE 5
 Relationship between personal satisfaction and two

 measures of point centrality (Leavitt's data)

 duced here should have a wide range of
 applications whenever there is reason to
 suspect that betweenness might be relevant to
 the substantive problem.
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 Equating Characteristics and Social

 Interaction: Two Experiments*

 MURRAY WEBSTER, JR.

 University of South Carolina

 How do status characteristics which equate actors affect their performance expectations in
 face-to-face interaction? Differentiating characteristics are known to produce differential
 expectations through a burden of proof process-for example, females or blacks interacting
 with males or whites are assigned low ability expectations in a wide range of situations. Much of
 the literature assumes equating characteristics operate the same way, but this question has never
 been subjected to direct test. Two experiments are reported which indicate that equating
 characteristics do not lead to equal performance expectations in the situations studied.

 How personal characteristics of actors
 affect their face-to-face interaction has long
 been one of the central concerns of social
 psychology. Hughes (1945) described the
 hypothetical interaction dilemma between a
 black female physician and a white male
 office-worker, and pointed out some of the
 relevant variables, and postulated some links
 between them. Personal characteristics were
 said to be significant because they were
 diffuse evaluated properties of actors; under
 certain unspecified conditions these character-
 istics were or were not seen by both parties as
 relevant to the interaction; and the interaction
 variables affected by characteristics seen as

 *Preparation of this report was made possible by
 a Summer Research Leave from the College of
 Humanities and Social Sciences, University of South
 Carolina.

 relevant all involve subordination and super-
 ordination.

 Since Hughes' work, an enormous number
 of studies substantiate the observation that
 evaluated personal characteristics affect inter-
 action in a great range of social situations.
 Torrance (1954) documented the effects of
 Air Force rank in laboratory groups; Whyte
 (1943) and Harvey (1953) described effects of
 informal status differences in boys' and adult
 gangs; and Strodtbeck (1958, 1965) analyzed
 effects of occupation and sex upon jury

 deliberation.
 Theoretical and laboratory research by

 Berger and his colleagues (Berger et al., 1966,
 1972; Berger and Fisek, 1970) offers a
 perspective for analyzing such social situations
 as those above. All of these cases involve
 actors engaged in problem solving interaction.
 When actors are concerned with the solution

 41
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