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Five.  Terminology for Network Analysis
This chapter provides:
An overview of the basic concepts required to describe the structure of social networks
A review of concepts of points, lines, neighbourhood, distance and density
Consideration of ego-focused networks and whole networks
An extensive discussion of network density
A study of face-to-face and online communities



Social network analysis involves the description of the structural features of the social relations of individuals and groups. These structural properties figure as the concepts in social theories that aim to explain patterns of action and processes of change. Those interested in social network analysis have devised a set of concepts that can be expressed in a formal language – that of mathematics – and so can give a precise summary of the structural features of particular systems of social relations. In this chapter I will outline a set of basic concepts that will allow a researcher to make the most general description of a social network and that are the building blocks of the more complex concepts introduced in later chapters. First, however, it is necessary to look at the types of social networks and the ways in which they are built.
Social networks are of two broad kinds, depending on whether the focus is on the agent (individual or collective) or on the whole structure of social relations connecting different individuals. A network based on a particular individual is called an egocentric network or ‘egonet’. An egonet comprises all the relations that a focal agent has with others. Collecting information on friendship choice among a sample of individuals, for example, will yield a large collection of egonets, one for each person in the sample. It is possible to analyse the types of people with whom a person is friendly and the variation in the numbers of friends that each person has. A number of other measures, which will be discussed later, can also be made on these egonets.
Egonets are not, however, completely separate from each other. A person’s friends each have their own friendship networks and so the relations of friendship will extend through long chains: I am a friend of Harry, who is a friend of Deborah, who is a friend of Jim, who is a friend of Jean, who is completely unknown to me. In a sample survey this may not be apparent, as it is unlikely that the friends of the respondent will also have been selected as respondents in the same survey. However, if data have been collected for a whole population, such as a school class or a set of companies, it is possible to connect the various egonets together as the building blocks of a larger structure that may connect all members of the population together. This larger structure is called the ‘whole network’.
Social network analysis can be used to study networks of both types, though the concepts used will sometimes have a slightly different meaning or method of calculation according to whether the research is concerned with egonets or whole networks. In this chapter I will highlight these variations wherever they are relevant.


The Language of Network Analysis
Many of the fundamental features of social networks can be analysed through the direct manipulation of matrices – transposing, adding and multiplying matrices will all produce information on their structure. Matrix algebra, however, is rather complex for most researchers (but see the simple introduction in Meek and Bradley, 1986). Although matrices are useful for the organisation and storage of relational data, specialist computer programs allow an easier and more direct approach to network analysis. This has typically been achieved through a mathematical language that directly operationalises the idea of the sociograms. This is the approach called ‘graph theory’, which provides a formal language for describing networks and their features. Graph theory translates matrix data into formal concepts and theorems that can be directly related to the substantive features of social networks. If the sociogram is one way of representing relational matrix data, the language of graph theory is a more general way of doing this. While it is not the only mathematical theory that has been used for modelling social networks, it is the starting point for many of the most fundamental ideas in social network analysis.
The concepts of graph theory are the basis of the principal procedures provided in the UCINET program, though it keeps as much of the mathematics as possible hidden from the user. Data in matrix form can be read by the programs, and suitable graph-theoretical concepts can be explored without the researcher needing to know anything at all about the mechanics of the theory or of matrix algebra. Nevertheless, an understanding of graph theory will significantly help to improve the sophistication of a researcher’s analyses, helping to ensure that he or she chooses procedures that are appropriate for the particular questions being investigated.
Graph theory concerns sets of elements and the relations among these, the elements being termed ‘points’ and the relations ‘lines’.1 A matrix describing the relations among a group of people can be converted into a graph of points connected by lines, and therefore a sociogram is a ‘graph’. It is important to be clear about the difference between this idea of a ‘graph’ and the graphs of variables used in statistics and other branches of quantitative mathematics. These more familiar graphs are graphs of variables that plot, for example, frequency data on axes that represent the variables. The graphs of graph theory are graphs of relations that express the qualitative patterns of connection among points. Indeed, graph diagrams themselves are of secondary importance in graph theory. As has already been suggested, it is often very difficult to draw a clear and comprehensible diagram for large sets of points with complex patterns of connection. By expressing the properties of the graph in a more abstract mathematical form, it is possible to dispense with the need to draw a sociogram and so ease the task of understanding very large graphs.
Nevertheless, the drawing of graph diagrams has always been of great illustrative importance in graph theory, and many will be used in this book. Because of the visual simplicity of small sociograms, I will begin with an introduction to the principles involved in drawing graph diagrams.
A graph diagram2 aims to represent each row or column in an incidence matrix –each of the cases or affiliations under investigation – by a point on paper or on a computer screen. Once the appropriate adjacency matrix has been derived, the ‘1’ and ‘0’ entries in the cells of the matrix, representing the presence or absence of a relation, can be indicated by the presence or absence of lines between the points. In Figure 4.5, for example, the symmetric 4 × 4 adjacency matrix of companies can be drawn as a four-point graph containing six lines, which correspond to the non-zero entries in the matrix.
In a graph, it is the pattern of connections that is important, and not the actual positioning of the points on the page or screen. The graph theorist has no interest in the relative position of two points, the lengths of the lines that are drawn between them, or the size of the character used to indicate the points. While graph theory does use concepts of length and location, these do not correspond directly to the ideas of physical length and location with which we are most familiar. It is usual in a graph diagram to draw all the lines with the same physical length, wherever this is possible, but this is a purely aesthetic convention and a matter of practical convenience. Indeed, it is not always possible to maintain this convention if the graph is to be drawn with any clarity. For this reason, there is no one correct way to draw a graph. The graph diagrams in Figure 5.1, for example, are equally valid ways of drawing the same graph – all convey exactly the same graph-theoretical information.


More than Joining up the Lines
The concepts of graph theory, then, are used to describe the patterns of connections among points. At its simplest, the social researcher represents each case by a dot on the page and proceeds to join up the dots to produce a pictorial representation of the network. The simplest of graph-theoretical concepts refer to the properties of the individual points and lines from which such a graph is constructed. However, lines are not simply lines; they differ in important ways that allow us to disclose the salient features of a social network.
Lines can correspond to any of the types of relational data distinguished in Figure 4.6: undirected, directed, valued, or both directed and valued. The graphs in Figure 5.1 consist of undirected lines. These graphs derive from a symmetric data matrix where it is simply the presence or absence of a relation that is of importance. If, however, the relations are directed from one agent to another, then they can be represented in a directed graph, sometimes termed a ‘digraph’. A directed graph is represented in drawn form by attaching an arrow head to each line, the direction of the arrow indicating the direction of the relation. A directed line is sometimes referred to as an ‘arc’. Figure 5.2 shows a simple directed graph.
If, on the other hand, the intensity of the relation is an important consideration and can be represented by a numerical value, the researcher can construct a valued graph in which numerical values are attached to each of the lines. I have already shown that a matrix for a directed graph may not be symmetric, as relations may not be reciprocated. Similarly, a matrix for a valued graph may or may not be symmetric, but it will contain values instead of simple binary entries.3 An example of a valued graph is that shown in Figure 4.5. One of the simplest and most widely used measures of intensity is the ‘multiplicity’ of a line. This is simply the number of separate contacts that make up the relationship. If, for example, two companies have two directors in common, the relation between the companies can be represented by a line of multiplicity 2. If they have three directors in common, the interlocking directorship can be seen as a line with multiplicity 3. The values in a graph can, of course, relate to any other suitable measure of intensity, such as the frequency of a relationship.
Figure 5.1 Alternative drawings of a graph
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Figure 5.2 A directed graph and its matrix
[image: Figure 17]
The fundamental ideas of graph theory can most easily be understood in relation to simple undirected and unvalued graphs. A number of apparently straightforward words are used to refer to graph-theoretical terms, and it may appear pedantic to define these at great length. However, these definitional matters are important, as the apparently simple words are generally used in highly specific and technical ways. It is essential that their meanings are clarified if the power of graph theory is to be understood.
Two points connected by a line are said to be adjacent to one another. ‘Adjacency’ is the graph-theoretical expression of the fact that two agents represented by points are directly related or connected with one another. Those points to which a particular point is adjacent are termed its ‘neighbourhood’, and the total number of other points in its neighbourhood is termed its ‘degree’ (strictly, its ‘degree of connection’). Thus, the degree of a point is a numerical measure of the size of its neighbourhood – how many others it is adjacent to. The degree of a point is shown by the number of non-zero entries in the corresponding row or column entry in the adjacency matrix. Where the data are binary, as in Figure 5.1, the degree is simply the row or column sum for that point.4 Because each line in a graph connects two points – it is ‘incident’ to two points – the total sum of the degrees of all the points in a graph must equal twice the total number of lines in the graph. The reason for this is that when calculating the degrees of the various points each line is counted twice, once each for the points at its two ends. This can be confirmed by examining Figure 5.1. In this graph, point B has degree 4 and all the other points have degree 2. Thus, the sum of the degrees is 12, which is equal to twice the number of lines (6). Degree measures can be computed in Pajek using the NET > PARTITIONS > DEGREE menu option.
Points may be directly connected by a line, or they may be indirectly connected through a sequence of lines. A sequence of lines in a graph is called a ‘walk’, and a walk in which each point and each line are distinct, when there is no returning or repetition, is called a path. The concept of the path is, after those of the point and the line, one of the most basic of all graph-theoretical concepts and is the basis of concepts of ‘length’ and ‘distance’. The length of a path is measured by the number of lines that make it up; the number of ‘steps’ necessary to get from one point to another. In Figure 5.1, for example, points A and D are not directly connected by a line but they are connected through the path ABD, which has a length of 2. A particularly important concept in graph theory is that of the distance between two points. This is the length of the shortest path (sometimes called the ‘geodesic’) that connects them.
Figure 5.3 Lines and paths
[image: Figure 17]
These concepts are illustrated in the simple graph in Figure 5.3. In this graph, AD is a path of length 1 (it is a line), while ABCD is a path of length 3. The walk ABCAD is not a path, as it passes twice through point A. It can be seen that points A and D are connected by three distinct paths: AD at length 1, ACD at length 2, and ABCD at length 3.5 The distance between A and D, however, is the length of the shortest path between them, which, in this case, is 1. The distance between points B and D, on the other hand, is 2. Many of the more complex graph-theoretical measures take account only of geodesics – shortest paths – while others consider all the paths in a graph.


The Flow of Information and Resources
A directed line is particularly useful for representing the flow of information or resources from one agent to another and so a directed graph allows us to chart the diffusion of information and resources through a network. The same concepts discussed above can be used with directed graphs, though some modifications must be made. The lines in a directed graph are directed to or from the various points. Each line must be considered along with its direction, and there will not be the symmetry that exists in simple, undirected relational data. The fact that, for example, person A chooses person B as a friend does not mean that there will be a matching friendship choice from B to A. Similarly, the fact that company C invests £500,000 in the shares of company D does not mean that there will be a corresponding investment – or any investment – from D to C. For this reason, the ‘degree’ of a point in a directed graph comprises two distinct elements, called the ‘indegree’ and the ‘outdegree’. These are defined by the direction of the lines that represent the social relations. The indegree of a point is the total number of other points that have lines directed towards it; and its outdegree is the total number of other points to which it directs lines. The indegree of a point, therefore, is shown by its column sum in the matrix of the directed graph, while its outdegree is shown by its row sum. The column sum of point B in Figure 5.2, for example, is 2, as it ‘receives’ two lines (from A and from C). The corresponding sociogram shows clearly that its indegree is 2. The row sum for B, on the other hand, is 1, reflecting the fact that it directs just one line, to point C.
A path in a directed graph is a sequence of lines in which all the arrows point in the same direction. The sequence CAB in Figure 5.2, for example, is a path, but CBA is not: the changing direction of the arrows means that it is not possible to ‘reach’ A from C by passing through B.6 It can be seen that the criteria for connection are much stricter in a directed graph, as the researcher must take account of the direction of the lines rather than simply their presence or absence. The distance between two points in a directed graph, for example, must be measured only along the paths that can be identified when account is taken of direction. When agents are regarded as either ‘sources’ or ‘sinks’ for the flow of resources or information through a network, for example, it is sensible to take serious account of this directionality in analysing the graph of the network.
The flow of information through directed networks has been central to studies of diffusion. This was explored in topological terms by Tarde (1890), but it was not until the work of Rogers (1962) and Coleman et al. (1966) that it was investigated in true network terms. These studies showed the crucial effects of network structures in shaping the flow and speed of diffusion and the effects of distance on the attenuation of information.
Sometimes, however, the direction of the lines can legitimately be ignored. If it is the mere presence or absence of a line that is important, its direction being a relatively unimportant factor, it is possible to relax the usual strict criteria of connection and to regard any two points as connected if there is a sequence of lines between them, regardless of the directions of the arrows. In such an analysis it is usual to speak of the presence of a ‘semi-path’ rather than a path. CBA in Figure 5.2 is a semi-path. Treating directed data as if they were undirected, therefore, means that all the usual measures for undirected data may then be used.


Density of Connections
One of the most widely used concepts in graph theory is that of ‘density’. This describes the general level of linkage among the points in a graph. Uses of density in social network analysis can best be illustrated by considering unvalued and symmetrical data, though the issues about value and symmetry discussed in the previous section must still be borne in mind.
Density is the overall level of connectedness in a network. Its measurement depends upon two other parameters of network structure: the inclusiveness of the graph and the sum of the degrees of its points. Inclusiveness refers to the number of points included within the various connected parts of the graph. Put in another way, the inclusiveness of a graph is the total number of points minus the number of isolated points. The most useful measure of inclusiveness for comparing various graphs is the number of connected points expressed as a proportion of the total number of points. Thus, a 20-point graph with five isolated points would have an inclusiveness of 0.75. An isolated point has no connections and so can contribute nothing to the density of the graph. Thus, the more inclusive the graph, the denser it will be. Those points that are connected to one another, however, will vary in their degree of connection. Some points will be connected to many other points, while others will be less well connected. The higher the degrees of the points in a graph, the denser it will be. In order to measure density, then, it is necessary to use a formula that incorporates these two parameters. This involves comparing the actual number of lines present in a graph with the total number of lines that would be present if the graph were complete. A ‘complete’ graph is one in which all the points are adjacent to one another: each point is connected directly to every other point. Such completion is very rare, even in very small networks, and the concept of density is an attempt to summarise the overall distribution of lines in order to measure how far the graph is from this state of completion. A complete graph has a density of 100 per cent, conventionally expressed as 1.0. A graph in which half of all possible connections are present has a density of 50 per cent or 0.5, so density varies on a scale of 0 to 1.0.
The actual number of lines in a graph is a direct reflection of its inclusiveness and the degrees of its points. This may be calculated directly in small graphs, but in larger graphs it must be calculated from the adjacency matrix. The number of lines in any graph is equal to half the sum of the degrees. In Figure 5.1, as I have already shown, half the sum of the row or column totals is 6. The maximum number of lines that could be present in this graph can be easily calculated from the number of points that it contains. Each point may be connected to all except one other point (itself), and so an undirected graph with n points can contain a maximum of n(n – 1)/2 distinct lines. Calculating n(n – 1) would give the total number of pairs of points in the graph, but the number of lines that could connect these points is half this total, as the line connecting the pair A and B is the same as that connecting the pair B and A. Thus, a graph with three points can have a maximum of 3 lines connecting its points; one with four points can have a maximum of 6 lines; one with five points can have a maximum of 10 lines; and so on. It can be seen that the number of lines increases at a much faster rate than the number of points. Indeed, this is one of the biggest obstacles to computing measures for large networks. A graph with 250 points, for example, can contain up to 31,125 lines.
The density of a graph is formally defined as the number of lines in a graph, expressed as a proportion of the maximum possible number of lines. The formula for the density is
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where l is the number of lines present.7 As already indicated, this measure can vary from 0 to 1.0, the density of a complete graph being 1.0. The densities of various graphs can be seen in Figure 5.4: each graph contains four points and so could contain a maximum of 6 lines. It can be seen how the density varies with the inclusiveness and the sum of the degrees.8 In Pajek, density measures are computed from the INFO > NETWORKS > GENERAL menu choice and in UCINET these are calculated using NETWORK > COHESION > DENSITY.


Figure 5.4 Density comparisons
[image: Figure 19]
In directed graphs the calculation of the density must be slightly different. The matrix for directed data is asymmetric, as a directed line from A to B will not necessarily involve a reciprocated line directed from B to A. For this reason, the maximum number of lines that could be present in a directed graph is equal to the total number of pairs that it contains. This is simply calculated as n(n − 1). The density formula for a directed graph, therefore, is l/n(n − 1).
It is also possible to use the density measure with valued graphs, though there is very little agreement about how this should be done. The simplest solution, of course, is to disregard the values of the lines and to treat the graph as a simple directed or undirected graph. This involves a considerable loss of information. It might be reasonable, for example, to see lines with high multiplicity as contributing more to the density of the graph than lines with low multiplicity. This would suggest that the number of lines in a valued graph might be weighted by their multiplicities: a line with multiplicity 3 might be counted as being the equivalent of three lines. Simple multiplication, then, would give a weighted total for the actual number of lines in a graph. But the denominator of the density formula is not so easy to calculate for valued graphs. The denominator, it will be recalled, is the maximum possible number of lines that a graph can contain. This figure must be based on assumptions about the maximum possible value that could be taken by the multiplicity in the network in question. If the maximum multiplicity is assumed to be 4, then the weighted maximum number of lines would be equal to four times the figure that would apply for a similar unvalued graph. However, it is not at all obvious how a researcher might decide on an estimate of what the maximum multiplicity for a particular relation would be. One solution is to take the highest multiplicity actually found in the network and to use this as the weighting (Barnes, 1969). There is, however, no particular reason why the highest multiplicity actually found should correspond to the theoretically possible maximum. In fact, a maximum value for the multiplicity can be estimated only when the researcher has some independent information about the nature of the relationships under investigation. In the case of company interlocks, for example, average board size and the number of directorships might be taken as weightings. If the mean board size is 5, for example, and no person can hold more than two directorships, then the mean multiplicity would be 5 in a complete and fully connected graph.
In the case of the company sociogram in Figure 4.5, for example, the weighted total of lines measured on this basis would be 5 times 6, or 30. The actual total of weighted lines in the same sociogram, produced by adding the values of all the lines, is 12, and so the multiplicity-based density would be 12/30, or 0.4. This compares with a density of 1.0 which would be calculated if the data were treated as if they were unvalued. It must be remembered, however, that the multiplicity-based calculation is based on an argument about the maximum number of directorships that a person can hold. If it were possible for a person to hold a maximum of three directorships, for example, then the density of the company sociogram would fall from 0.4 to 0.2. Typically, of course, there is no fixed limit to the number of directorships that a person can hold, and so such calculations are impossible to make unless an arbitrary limit is chosen by the researcher. The problem in handling valued data may be even more complex if the values do not refer to multiplicities. For other measures of intensity, there is no obvious way of weighting lines.
The density measure for valued graphs, therefore, is highly sensitive to assumptions that a researcher makes about the data. A measure of density calculated in this way, however, is totally incommensurable with a measure of density for unvalued data. For this reason, it is important that a researcher does not use a measure simply because it is available in a standard program. A researcher must always be perfectly clear about the assumptions involved in any particular procedure, and must report these along with the density measures calculated.


Density in Egonets
The discussion so far has assumed that we are dealing with whole networks. Barnes (1974) and Mitchell (1969) have discussed the application of density measures to egonets such as ‘personal networks’ (Crossley et al., 2015). In such an analysis a measure of density would be concerned with the density of the links surrounding particular agents. From this socio-centric standpoint, the density is that of the overall network, and not simply of the ‘personal networks’ of focal agents.
In an egonet constructed from sample data the network will typically include the agent (‘ego’) and his, her or its direct connections to others. In such a case, the egonet is necessarily complete and so its density will always be 1.0, which is not very informative. The density of an egonet, therefore, is more usually calculated for egonets that have been derived from a whole network, as the data include the contacts among the others involved in the egonet. Density then becomes a measure of the connections among ego’s contacts. In the case of friendship, for example, it measures whether they are strongly mutually connected – everyone knowing everyone else – or whether the various friends are segregated from each other and are connected only through ego. An important qualification is often made to the way in which density is measured in an egonet. It is common to disregard the focal agent and his or her direct contacts, concentrating only on the links that exist among these contacts. Figure 5.5 shows the consequences of this. Sociogram (i) shows a network of five individuals anchored around ego. The sociogram shows ego’s direct contacts and the relations that exist among these contacts. There is a total of 6 lines, and the density of the sociogram is 0.60. But the density is at this relatively high level principally because of the four lines that connect ego to B, C and D. These relations will exist almost by definition. If these data had, for example, been obtained through a questionnaire that asked respondents to name their four best friends, the high density would be an artefact of the question wording. The relations to the four nominated contacts of each respondent will swamp any information about the relations among those who are named by each respondent and for this reason should usually be ignored in calculations of density. The significant fact about sociogram (i) is that there are relatively few connections among ego’s own contacts. In sociogram (ii), where ego’s direct contacts are shown as dotted lines, there are two relations among A, C and D (shown as solid lines), and the four-person network has a density of 0.33. It is for this reason that many analysts regard this as a more useful measure of the density of the egonet.9 It can be argued, however, that both measures are useful and that they highlight different features of the networks.
Figure 5.5 Measures of density in egonets
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Problems in Density Measures
A far more fundamental problem that affects all measures of density must now be considered. This is the fact that the density depends on the size of a graph. This prevents density measures being compared across networks of different sizes (see Niemeijer, 1973; Friedkin, 1981; Snijders, 1981). Density, it will be recalled, varies with the number of lines present in a graph, this being compared with the number of lines that would be present in a complete graph. There are very good reasons to believe that the maximum number of lines achievable in any real graph may be well below the theoretically possible maximum. If there is an upper limit to the number of relations that each agent can sustain, the total number of lines in the graph will be limited by the number of agents. This limit on the total number of lines means that larger graphs will, other things being equal, have lower densities than small graphs. This is linked, in particular, to the time constraints under which agents operate. Mayhew and Levinger (1976) argue that there are limits on the amount of time people can invest in making and maintaining relations. The time that can be allocated to any particular relation, they argue, is limited, and it will decline as the number of contacts increases. Agents will, therefore, decide to stop making new relations – new investments of time –when the rewards decline and it becomes too costly. The number of contacts they can sustain, therefore, declines as the size of the network increases. Time constraints, therefore, produce a limit to the number of contacts and, therefore, the density of the network. Mayhew and Levinger have used models of random choice to suggest that the maximum value for density that is likely to be found in actual graphs is 0.5.10
The ability of agents to sustain relations is also limited by the particular kind of relation involved. A ‘loving’ relation, for example, generally involves more emotional commitment than an ‘awareness’ relation, and it is likely that people can be aware of many more people than they could love. This means that a network of loving relations, other things being equal, is likely to have a lower density than any network of awareness relations.
I suggested in Chapter 3 that density was one of the whole-network measures that might reasonably be estimated from sample data. Now that the measurement of density has been more fully discussed, it is possible to look at this suggestion in greater detail. The simplest and most straightforward way to measure the density of a large network from sample data would be to estimate it from the mean degree of the cases included in the sample. With a representative sample of a sufficient size, a measure of the mean degree would be as reliable as any measure of population attributes derived from sample data, though I have suggested some of the reasons why sample data may fail to reflect the full range of relations. If the estimate is, indeed, felt to be reliable, it can be used to calculate the number of lines in the network. The degree sum – the sum of the degrees of all the points in the graph – is equal to the estimated mean degree multiplied by the total number of cases in the population. Once this sum is calculated, the number of lines is easily calculated as half this figure. As the maximum possible number of lines can always be calculated directly from the total number of points (it is always equal to n(n − 1)/2 in an undirected graph), the density of the graph can be estimated by calculating
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which reduces to (n × mean degree)/n(n–1).
Granovetter (1976) has gone further than this and attempted to provide a method of density estimation that can be used when the researcher is uncertain about the reliability of the initial estimate of the mean degree. In some situations there may be a highly reliable estimate. With company interlock data, for example, the available directories of company information allow researchers to obtain complete information on the connections of sample companies to all companies in the population, within the limits of accuracy achieved by the directories. In such circumstances, an estimate of mean degree will be reliable. In studies of acquaintance, on the other hand, such reliability is not normally the case, especially when the population is very large. Granovetter’s solution is to reject a single large sample in favour of a number of smaller samples. The graphs of acquaintance in each of the subsamples (the ‘random subgraphs’) can be examined for their densities, and Granovetter shows that an average of the random subgraph densities results in a reliable estimate of the population network density. Using standard statistical theory, Granovetter has shown that, for a population of 100,000, samples of between 100 and 200 cases will allow reliable estimates to be made. With a sample size of 100, five such samples would be needed; with a sample size of 200, only two samples would be needed.11 These points have been further explored in field research, which has confirmed the general strategy (Erickson et al., 1981; Erickson and Nosanchuck, 1983).
It is hardly surprising that density has become one of the commonest measures in social network analysis. It is an easily calculated measure for both undirected and directed graphs, it can be used for both egonets and whole-network studies, and it can be reliably estimated from sample data. I hope that I have suggested, however, some of the limits on its usefulness. It is a problematic measure to use with valued data, it varies with the type of relation and with the size of the graph, and, for this reason, it cannot be used for comparisons across networks that vary significantly in size. Despite these limitations, the measurement of density will, rightly, retain its importance in social network analysis. If it is reported along with such other measures as the inclusiveness and the network size, it can continue to play a powerful role in the comparative study of social networks.


A Digression on Absolute Density
The crucial problem with the existing measures of density is that density is relative to size, which makes it difficult to use the measure in comparisons of radically different sized graphs. This raises the question of whether it might not be possible to devise a measure of absolute density that would be of more use in comparative studies. This is not an essential element in my discussion, however, and it may be ignored by those readers who wish to proceed directly to the illustration of the uses of graph theory in social research in the following section. Some readers may prefer to skip-read this section and return to it after completing Chapter 6.
A concept of density modelled on that used in physics for the study of solid bodies would require measures of ‘radius’, ‘diameter’ and ‘circumference’. The radius of a circular or spherical object is the distance from its centre to its circumference, on which are found its most distant reachable points. This idea of the absolute centre is discussed in the following chapter but can be taken in its common-sense meaning for now: the absolute centre is simply the point that lies ‘in the middle’ of a graph. Translating this into graph-theoretical terms, the eccentricity of the absolute centre of a graph can be regarded as the ‘radius’ of the graph. This can be illustrated by referring to some of the features of Figure 5.6, the details of which will be examined more formally in Chapter 6. The ‘diameter’ of a graph is defined as the greatest distance between any pair of its points. In sociogram (iv) of Figure 5.6, for example, the radius is 1.5 and the diameter is 3. In this case, then, the diameter is equal to twice the radius, as would be the case in the conventional geometry of a circle or a sphere. This will not, however, be true for all graphs.
In geometry there is a definite relationship between the area and the volume of a body, these relationships being generalisable to objects located in more than three -dimensions. The area of a circle is πr2 and the volume of a sphere is 4πr3/3, where π is the ratio of the circumference of a circle to its diameter. The general formula for the area of a circle, therefore, is cr2/d, and that for the volume of a sphere is 4cr3/3d, where c is the circumference, r is the radius and d is the diameter. Applying this to sociogram (iv) of Figure 5.6 would show that it has a volume of 4c(1.5)3/9, or 1.5c.12 But what value is to be given to c in this formula? If the diameter of a graph is taken to be the length of the geodesic between its most distant points (the longest geodesic), the circumference might most naturally be seen as the longest possible path in the graph. In sociogram (iv), this is the path of length 5 that connects point G to point F. Thus, the ‘volume’ of the example sociogram is 7.5.
Figure 5.6 Absolute measures in a graph
[image: Figure 20]
Relatively simple geometry has, therefore, enabled us to move a part of the way towards a measure applicable to the absolute density of a graph in three dimensions. Density in physics is defined as mass divided by volume, and so to complete the calculation a measure of the ‘mass’ of a graph is required. Mass in physics is simply the amount of matter that a body contains, and the most straightforward graph-theoretical concept of mass is simply the number of lines that a graph contains. In sociogram (iv) of Figure 5.6 there are eight lines, and so its absolute density would be 8/7.5, or 1.07.
Generalising from this case, it can be suggested that the absolute density of a graph is given by the formula l/(4cr3/3d), where l is the number of lines. Unlike the relative density measure discussed earlier in this chapter, this formula gives an absolute value that can be compared for any and all graphs, regardless of their size. But one important reservation must be entered: the value of the absolute density measure is dependent on the number of dimensions in which it is measured. The absolute density measure given here has been calculated for graphs in three dimensions. The concept could be generalised to higher dimensions, by using established formulae for ‘hyper-volumes’, but such an approach would require some agreement about how to determine the dimensionality of a graph. This issue will be approached again in Chapter 9, drawing on the arguments of Freeman (1983).13 Unfortunately, no available software makes the calculation of absolute density a real possibility for social network analysts.


Community Structure and Density
The power and utility of density analysis can be illustrated through some concrete studies of community relations. Barry Wellman (1979, 1982), a member of Harrison White’s original cohort of network analysts at Harvard, has undertaken a number of studies of community structure, in which the measurement of density has played a key role. He took as his starting point the long-standing tradition of community studies, in which writers on ‘community’ had generally been concerned to investigate whether the communal solidarities associated with small-scale, rural villages had been able to withstand the modernising forces of industrialisation and urbanisation. Wellman wanted to use social network analysis to see whether the development of modern societies had resulted in the disappearance of community and the emergence of urban anomie. It had been pointed out by some critics of community studies that social relations of all kinds had become detached from specific localities, with relations having an increasingly national or international scope (see the discussion in Bulmer, 1985). Wellman’s early research aimed to investigate this issue for a particular urban area in Toronto – East York – and, like Fischer (1977, 1982), he focused on the question of whether ‘personal communities’, investigated as egonets, had stretched beyond the bounds of the local neighbourhood itself.
East York is an inner-city suburb of private houses and apartment blocks and was, at the time of the research in 1968, occupied mainly by skilled manual workers and routine white-collar workers. Wellman’s fieldwork involved interviews with a random sample of 845 adults, and a key question in the interviews involved asking people to name their six closest associates. They were then asked to say whether those named were themselves close to one another (see also McCallister and Fischer, 1978). This was an attempt to go beyond direct connections by asking people about their knowledge of the relations among their friends. This is an ingenious way of going beyond the limits of sample survey data but is limited by the accuracy and completeness of the knowledge that a person has about his or her friends’ friendship choices. The responses to these questions were then used to construct egonets of intimate association for each respondent, at least as these were perceived by the respondent. By asking about the connections among the persons who were named by each respondent, Wellman was able to measure the density of each personal network. This calculation of density followed the procedure outlined earlier, and ignored the direct links between respondents and their intimates. That is, data were collected on ego and his or her six intimate associates, but the densities of the egonets were calculated for the links among the six associates only.
Wellman discovered that many of the intimate associates (about a half) were relatives of the respondents, but kin and non-kin associates were all to be found across a wide geographical area. The majority of all links were with people who lived in the city itself, though very few of these links were based in the immediate locality of East York. A quarter of all the intimate associates named by respondents lived outside the city, some living overseas. Having summarised the broad shape of people’s personal networks, Wellman turned to a comparison of their densities. The mean density of these egonets was 0.33,14 only one-fifth of networks having a density greater than 0.50 (Wellman, 1979: 1215). A density of 0.33 meant that five out of the 15 possible links among intimate associates were actually present.15 Wellman discovered that the densest networks tended to be those that were composed mainly of kin, owing to the fact that it was more likely that the kin of the respondents would maintain mutual contacts. Where kinship obligations were absent, such contacts were less likely to be maintained.
Wellman’s principal findings on personal networks are summarised in Figure 5.7. He interprets these data as indicating that people were involved in networks that were ‘sparsely knit’. That is, the networks were of low density. ‘Communal’ links were neither solidaristic nor localised. People did have particular others to rely on, but the low density of their personal networks, their lack of mutual cross-linkages, meant that such help was likely to be limited. These personal networks were, nevertheless, important sources of help and support, on both an everyday basis and in emergencies: ‘East Yorkers can almost always count on help from at least one of their intimates, but they cannot count on such help from most of them’ (Wellman, 1979: 1217). Those intimate associates who were less likely to give help and support were more likely to be significant for sociability. Helpers were more likely to be kin, while those who were most important for sociability were more likely to be co-residents or co-workers.
Figure 5.7 Density of personal networks
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To pursue some further issues, a follow-up study was undertaken in which in-depth interviews were carried out, during 1977–78, with 34 of the original respondents. The aim was to get more ‘qualitative’ contextual data for the structural data of the earlier study. Although the detailed results of this stage of the inquiry go beyond the immediate concerns of this chapter, some of the directions pursued can usefully be outlined. Wellman discovered that the interpersonal networks of households were differentiated by gender divisions and by the involvement of household members in paid work. He found, for example, a number of differences between households where women were involved in paid employment and those where they were involved only in domestic work. He discovered that the social relations of a household and their access to interpersonal support from kin, friends, neighbours and co-workers were most likely to be maintained by women rather than by men. This was especially true of households where women were engaged solely in domestic work. Households where women were involved in both domestic work and in paid employment had far less dense networks of relations and were, therefore, able to obtain less support and fewer services from their contacts (Wellman, 1985).16
Wellman’s studies relied on survey methods to generate the relational data used, but similar methods and measures can be used on other forms of relational data. Smith (1979), for example, used historical data derived from documentary sources to investigate communal patterns in an English village in the thirteenth century. Smith’s data came from the records of the manor court of Redgrave in Suffolk, these records showing such things as patterns of landholding, property transactions, and financial disputes among the villagers. In total, he considered 13,592 relations among 575 individuals over the period 1259–93. Initially, he analysed the different types of relations and their frequency, which showed that about two-thirds of the relations were ‘pledging’ relations. These were relations in which one person gave a specific legal commitment in support of another person in relation to debt repayments and other financial arrangements.
Smith’s concern was with the role of kinship and other local ties in organising these relations and in structuring communal relations.17 Homans (1941) had previously undertaken a similar historical study of communal solidarity, but had not applied any social network concepts in his study. By contrast, Smith used the idea of the egonet as his principal orientating concept. The 425 Redgrave landholders of the year 1289 were divided into four categories according to the size of their landholdings, and equal-sized random samples were drawn from each category. This gave 112 individuals for analysis, and their documented relations with all other people over the ten-year period from 1283 to 1292 were extracted from the database. The personal egonets of the 112 people, taking account of the distance 1 relations, were then analysed in terms of their social bases and geographical spread. The distribution of the densities of the personal networks showed a curvilinear relation to landholding. Thus, density increased steadily with size of landholding among those with four acres of land or less, and it decreased steadily with the size of holding for those with more than four acres. Those with three or four acres, therefore, had the densest personal networks, median density among these households being between 0.2 and 0.4. They were also the most involved in multiplex relations. It was, therefore, the middling landholders who were best integrated into their village community. In the light of the earlier discussion of the relation between network size and density, it is interesting to note that Smith discovered a correlation of just 0.012 between the two measures. He concluded, therefore, that the observed variations in network density were not a mere artefact of network size, but reflected real variations in the quality of interpersonal relations.
Taking account of all his network data, Smith rejected the idea that Redgrave was a tightly knit organic community organised around kin and neighbours. The network structure of the medieval village, at least as far as Redgrave was concerned, was much looser than this image. Neither were distant kin an especially important source of social support:

those individuals who interacted most frequently with near neighbours also interacted most frequently with kin, although probably on most occasions residing apart from them. These kin, however, tended to be close: siblings, uncles, nephews, nieces, fathers and mothers, sons and daughters. (Smith, 1979: 244)

Wellman recognised that the egonets that he studied in East York were linked into chains of connection through overlapping associations: there was, he held, a ‘concatenation of networks’ with personal networks being ‘strands in the larger metropolitan web’ (Wellman, 1979: 1227). However, he did not directly investigate these overall features of the whole network of East York. Some pointers to the shape that this ‘concatenation’ might take are provided in Grieco’s (1987) extension of the work of White (1970) and Granovetter (1974). Grieco’s research concerned the giving and receiving of information about job opportunities, and she showed that the flow of help from particular individuals to their network contacts produces an alteration in the global structure of the network. Where information is received indirectly, from contacts at a distance of 2 or more, there is a tendency for a new direct link, albeit a weak one, to be established between the originator of the information and those who received it (Grieco, 1987: 108ff.). The overall density of the network, therefore, increases, and some of these links may be solidified and strengthened through feelings of solidarity and obligation. Thus, some of the initial increase in density will persist. When others in the network acquire the ability to reciprocate for the help that they have received they will, in turn, tend to create new direct links and a further alteration in the density of the network. In this way, changes at the individual level of egonets result in a continual transformation of the density and the other features of the whole network.
Recent work by Wellman and others has investigated changes in network relations consequent upon advances in communications technology. Personal community links have gradually been extended in geographical scope and ease of communication by use of the car, aeroplane and telephone, but electronic computer communication through the internet and mobile phone has, perhaps, had the most extensive consequences. Cheap or no-cost communication by email, Skype and messaging services allows communication to be stretched in both time and space, enabling people to stay in touch over extended distances. Contrary to some public commentary, computer use has not led to autistic, withdrawn and isolated individuals, but to individuals integrated into online communities that are more or less connected to localised geographical communities. Indeed, growth in the number of friends has been found to be directly related to the amount of internet activity: people make more friends through the internet (Wellman et al., 2006; Wang and Wellman, 2010).
Websites such as Facebook and Twitter have become central nodes in an extensive network of interpersonal communication that has been described as a cyberspace. People can communicate and participate in large and extensive groups that can simulate face-to-face interaction but introduce a variety of subtle and complex alterations to communication. Individuals may use aliases and build misleading identities that, because of the absence of immediate face-to-face cues, may make for a stronger element of fictional self-presentation than in other forms of interaction. These new communities may, however, be easy for sociologists to study as electronic communication leaves digital traces that can be accurately and unobtrusively tracked and mapped using data mining techniques (Gruzd and Haythornthwaite, 2011). Sociologists are only just beginning to model these cybercommunities and to chart the patterns of solidarity and cohesion that they make possible.

Exercise
Using the data set that you created in Chapter 4, carry out the tasks below. If you have not created that data set, choose one of the example data sets provided with your preferred computer program. (You should try to use a small data set.)
Disregard the values attached to the lines, and through visual inspection of the matrix or sociogram try to identify the following:
The point with the highest degreeThe longest path in the network
Load the data set into your program and make the same calculations to check your results.
Compute the density of the network and consider whether your calculation suggests a high or low level of connection for the data that you are using.


Further Reading
Crossley, N., Bellotti, E., Edwards, G., Everett, M., Koskinen, J., and Tranmer, M. (2015) Social Network Analysis for Ego-Nets. London: Sage.An excellent introduction and comprehensive coverage of egonets.Gruzd. A. and Haythornthwaite, C. (2011) ‘Networking Online: Cybercommunities’, in J. Scott and P. Carrington (eds) The Sage Handbook of Social Network Analysis. London: Sage.Explores particular issues in the investigation of online networks.
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