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 Navigating the Range of Statistical Tools

 for Inferential Network Analysis 0 Q

 Skyler J. Cranmer The Ohio State University
 Philip Leifeld University of Glasgow, Swiss Federal Institute of Aquatic Science
 and Technology (Eawag), University of Bern
 Scott D. McClurg Southern Illinois University
 Meredith Rolfe University of Massachusetts-Amherst

 Abstract: The last decade has seen substantial advances in statistical techniques for the analysis of network data, as well as a

 major increase in the frequency with which these tools are used. These techniques are designed to accomplish the same broad

 goal, statistically valid inference in the presence of highly interdependent relationships, but important differences remain

 between them. We review three approaches commonly used for inferential network analysis—the quadratic assignment

 procedure, exponential random graph models, and latent space network models—highlighting the strengths and weaknesses

 of the techniques relative to one another. An illustrative example using climate change policy network data shows that all

 three network models outperform standard logit estimates on multiple criteria. This article introduces political scientists

 to a class of network techniques beyond simple descriptive measures of network structure, and it helps researchers choose
 which model to use in their own research.

 Replication Materials: The data, code, and any additional materials required to replicate all analyses in this arti
 cle are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network, at:

 http://dx.doi.org/10.7910/DVN/2XP8YF.

 Statistical methods usually require observational
 independence, or the assumption that actors do
 not influence each other's outcomes. While such

 an assumption may apply to randomized surveys or lab
 experiments, it is less believable in social and political
 systems where the interactions between actors are an
 integral part of the process of interest. The implications

 of interdependencies have been recognized in the cases
 of time-series and spatial data, but political scientists
 are less familiar with the methods used to model

 network-based interdependence. Crucially, the devel
 opment of sophisticated statistical models for studying
 interdependence is not "merely" a statistical advance,
 but opens the door for new questions and theories to be

 posed and tested. Our goal is to introduce and compare
 three methods commonly used for statistical inference

 with network data, and to demonstrate the added value

 of specialized network models compared to a more
 traditional logit-based estimation approach.

 Here, we focus on three techniques designed to
 model relational outcomes: the quadratic assignment
 procedure, exponential random graph models, and latent

 space network models. In other words, these are models

 that describe a network of political interactions, where

 the outcome of interest is a political relationship (e.g.,

 wars, legislative collaboration). Such an understanding of
 networks—that is to say, one focused on explaining inter

 dependence in relationships—is of interest in many cor
 ners of the discipline. For example, networks are formed

 by terror groups (Desmarais and Cranmer 2013; Perliger

 and Pedahzur 2011), mutual protection treaties (Maoz
 et al. 2006), and trade flows (Krempel and Plümper 2002).
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 Institutional networks are relevant to diaspora politics

 (Miller and Ritter 2014), the impact of nongovernmental

 organizations on policy (Montoya 2008), and cooperation

 and conflict in legislatures (Tarn Cho and Fowler 2010).
 Networks are also part of understanding political behav

 ior, especially where we are interested in questions in
 volving integration, cooperation, and conflict (Ahn et al.
 2013; McCubbins, Paturi, and Weiler 2009).

 Political Science and the "Problem"
 of Interdependence

 The study of interdependence is part of the core mission
 of the social sciences, if not the core mission (Ward, Stovel,

 and Sacks 2011). It is impossible to describe political and

 social activity without describing how actors (e.g., indi

 viduals, groups, states) interact with, react to, adapt to,

 and influence one another in complex and dynamic ways.

 One can view interdependence as either a threat to the va

 lidity of statistical analysis or as fundamental to a theory

 of political processes. These two perspectives are radically

 different in substance, yet both imply the need to model

 interdependencies empirically. While we hold that the
 latter perspective is more compelling, political scientists

 have generally viewed interdependence as a threat.

 Most statistical techniques, including regression
 models, depend critically on the presence of conditional

 independence of observations for their validity. Consider

 a generalized linear model estimated by maximum like
 lihood (e.g., logit, Poisson, or Gaussian linear model).
 The joint likelihood—that is, the object to be maxi
 mized in order to recover the parameter estimates—is
 computed as

 where 9 are the parameters, y is the vector of outcomes,
 X is the matrix of covariates, tt is the number of observa

 tions in y, and y; is the outcome for a given observation

 i (Greene 2004). In other words, the likelihood for all the

 data in the model is the product over the individual func
 tions of each observation i. Because each observation is

 entirely independent of every other observation, condi

 tional only on the covariates included in the X matrix, the

 axioms of probability dictate that the product over these

 individual values is a valid joint likelihood for all the data.

 Critically, this joint likelihood will only be valid if the

 observations are conditionally independent. If the condi

 tional independence assumption is broken, by omission
 of a relevant covariate (as in the case of omitted variable

 bias) or by omission of relevant endogenous (network)

 n

 (i)
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 dependencies, Equation (1) will not be a joint likelihood.
 To be clear, nothing will block the computation of a quan

 tity,1 but that quantity is not the joint likelihood and has

 no known statistical properties. The bias introduced by

 violation of the independence assumption is arbitrary and

 can range from trivial to catastrophic, contingent on the

 extent of the unmodeled dependencies and the sensitivity
 of the model to them.

 Substantively, we must ask ourselves whether the
 observations under consideration influence each other

 through means not accounted for by the covariates.
 Cranmer, Desmarais, and Menninga (2012) illustrate the
 limits of the independence assumption in an analysis of
 World War II. The assumption of conditional indepen
 dence in a traditional logit model of conflict implies that

 the British declaration of war on Germany in 1939 was

 entirely independent of all factors other than, say, regime

 type similarity and the ratio of relative capabilities be
 tween the two states. Such a claim is comical, as Britain's

 declaration of war was unambiguously a response to
 Germany's invasion of Poland, but standard regression
 models cannot account for such dependencies.

 Several recent studies have shown that when network

 dependencies are properly accounted for, long-standing
 substantive findings may be called into question. Perhaps

 the most persuasive example of this involves the "demo

 cratic peace," with the idea being that democracies tend

 not to fight one another (for canonical works, see Maoz
 and Abdolali 1989; Maoz and Russett 1993). The effect

 of the democratic peace has been largely established via

 logistic regression models, which assume conditional
 independence of observations. Recent works by Cranmer
 and Desmarais (2011) and Cranmer, Menninga, and
 Mucha (2015) have shown that joint democracy has no
 statistically discernible effect on conflict once network

 dependencies are accounted for, thus suggesting that
 network structure in which conflicts occur, rather than

 something about the nature of joint democracy, accounts

 for the paucity of conflicts between democratic states.
 What is more, failure to properly model network depen
 dencies can result in the same sort of bias. Maoz et al.

 (2006) were interested in the network concept of struc

 tural equivalence, but they included this effect as a predic

 tor in a logistic regression. A replication of this analysis by

 Cranmer and Desmarais (2011) using a temporal ex
 ponential random graph model uncovered substantial
 bias in the results, including a new lack of statistical sig

 nificance for their operationalization of the democratic

 peace.

 1 Statistical software has no means of knowing whether the inde
 pendence assumption is violated, and no errors or warnings will be
 produced by even wild violations of this assumption.
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 Models for Statistical Inference
 on Relational Data

 While many network analysis techniques are descriptive

 in nature, we review and compare three methods com

 monly used for inferential network analysis: the quadratic

 assignment procedure, latent space network models, and

 exponential random graph models. We focus on cross

 sectional models where binary network ties (called edges)
 between actors (called vertices) are the outcome of interest

 (e.g., relational data where the outcome of interest is the

 presence or absence of an edge), although these models
 can often be extended to accommodate different network

 types (e.g., longitudinally observed networks and net
 works with weighted edges).

 The Quadratic Assignment Procedure

 The quadratic assignment procedure (QAP) is a nonpara
 metric test for the significance of an association between

 two matrices with complex dependencies (Hubert and
 Schultz 1976). The QAP is not a statistical model but an

 add-on for standard regression models that provides an

 unbiased test of association in spite of potential depen
 dencies. While the original QAP (Mantel 1967) was de
 signed for bivariate associations, Krackhardt ( 1987,1988)

 introduced multiple regression QAP (MRQAP).

 Assuming that linear models for square matrices take
 the form

 N=$X + yZ+E, (2)

 where N, X, Z, and E are n x ti matrices (with n denoting
 the number of vertices in the network), X and Z are
 predictors, N is the outcome network, E is the error
 term, and ß and -y are coefficients to be estimated, the

 uncertainty measures of ß and 7 are generally biased
 because the observations within N are partly dependent
 on each other.

 The intuition behind the QAP is that permutations of
 N, where the order of the rows and columns is reshuffled

 simultaneously in the same way, preserve the dependency
 structure across observations within N, but remove the

 dependencies in the associations between N and X as well

 as N and Z. For example, if X denotes a matrix containing
 legislators' common memberships in committees and N

 denotes legislators' information-exchange patterns, then
 a simultaneous permutation of the rows and columns of

 N (in the same way) would still preserve the information

 on who exchanges information with whom, but it is no

 longer possible to relate the common committee mem

 berships of a specific actor pair (ij) to the information

 exchange pattern of the same dyad. While there is likely

 an association between X and the original, nonpermuted

 N, there is not expected to be an association between X

 and the permuted N.

 The QAP uses this permutation procedure to cre
 ate an empirical sampling distribution reflecting a new
 null hypothesis of no association that correctly takes into

 account the correlation between observations. The pro
 cedure repeats the permutations a large number of times

 and recomputes the association measure (e.g., the re
 gression coefficient for X in the MRQAP case) at each

 iteration. The resulting distribution corresponds to the

 distribution under the null hypothesis that no associa
 tion between X and N exists, but correctly takes into

 account the dependencies within N. Finally, the origi
 nal coefficient for X is compared to the new distribution

 to see how many elements of the new distribution are
 less extreme than the coefficient, in order to obtain a

 dependency-corrected (and thus bias-corrected) p-value
 for the coefficient. Essentially, this approach treats de
 pendencies among the observations as a nuisance that

 needs to be corrected for rather than as an interesting fea

 ture that can be modeled. This makes the approach eas

 ier to learn and apply, but it offers no modeling choices

 if one is substantively interested in the structure of the

 dependencies.

 Martin (1999) generalizes the MRQAP to arbitrary
 outcome distributions (e.g., the common case of bi
 nary matrices) by applying the QAP test to coefficients

 from generalized linear models. However, subsequent
 research on the original QAP test finds that the p
 values produced by the original permutation approach are
 prone to bias under certain conditions (Dekker, Krack

 hardt, and Snijders 2007): (Combinations of) nonpiv
 otal association tests (e.g., partial regression coefficients;
 see Kennedy and Cade 1996; Dekker, Krackhardt, and
 Snijders 2007), collinearity (the presence of a third vari
 able Z in the model, which has a correlation both with

 N and the other predictor X; see Anderson and Robin
 son 2001), small numbers of vertices (Anderson and

 Robinson 2001), skewness of the edge weights in the out

 come network (Dekker, Krackhardt, and Snijders 2007),
 and high levels of autocorrelation between observations

 of the same vertices (Dekker, Krackhardt, and Snijders
 2007) lead to biased uncertainty measures. The cur
 rent states of the art are Freedman-Lane semi-partialing

 (Freedman and Lane 1983) and double semi-partialing
 (Dekker, Krackhardt, and Snijders 2007), both of which

 resolve most of the problems mentioned above when
 the general linear model is used (Dekker, Krackhardt,

 and Snijders 2007). Freedman-Lane semi-partialing and
 Dekker's double semi-partialing are termed residual
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 methods (as opposed to raw methods, which permute
 the raw N matrix) because they permute the residuals
 in order to partial out the effect of the third variable
 Z, which partly explains X and N. The Freedman-Lane
 semi-partialing method first estimates the effect of Z on

 N alone (without including the model term of interest
 X), then permutes the residuals of that model to simulate

 a distribution of new N matrices, and finally recomputes
 the full model for all simulated N in order to obtain a

 sampling distribution, thereby partialing out the effect of

 Z from N. Dekker's double semi-partialing is similar, but

 it partials out the effect of the third variable Z from the

 effect of the other predictors X, rather than the response

 matrix N. Dekker, Krackhardt, and Snijders (2007) show

 that these two approaches are largely unbiased under most

 circumstances in conjunction with a linear model; only

 high levels of collinearity between X and Z in combi
 nation with highly skewed edge values in the dependent

 network lead to an increased number of type I errors.

 It is yet unclear how this result would extend to bi

 nary network matrices with few edges (and thus a skewed

 distribution) when collinearity is present—despite nu
 merous published applications to binary networks in
 conjunction with logistic regression (e.g., Ingram and
 Roberts 2000). Besides this caveat, standard errors can

 not be recovered when the QAP approach is used; only
 the coefficient and its p-value are available. Moreover,
 QAP-corrected models are subject to the same limits as

 their uncorrected counterparts; for example, they are still
 sensitive to omitted variable bias.

 However, the MRQAP has some benefits that make

 it worth considering. Critically, it is the most accessible
 of the methods treated here. It is well implemented2 and

 easy to interpret, as MRQAP results can be interpreted
 like other regression. MRQAP can also produce reason
 able results under conditions that might make it difficult

 to obtain estimates using other methods (e.g., a dense
 network of relationships). Finally, the MRQAP does not
 need a theoretical model to "deal with" network depen
 dencies. While this reduces the likelihood that the results

 are contingent on a theoretically misspecified model, it

 also implies that there are no opportunities to learn about

 those dependencies.

 Exponential Random Graph Models

 The exponential random graph model (ERGM) is a pow
 erful model that has seen increased usage in recent years.

 implementations include Ucinet (Borgatti, Everett, and Freeman
 2002), Stata, and the sna package (Butts 2008) in E.

 SKYLER J. CRANMER ETAL.

 First proposed by Wasserman and Pattison (1996), the
 ERGM is a direct operationalization of the joint prob
 ability density from which the networks are thought to

 be generated, with minimal modeling assumptions. For
 intuition, consider that the ERGM finds its parameters

 by maximizing the probability of the observed network
 over the networks with the same number of vertices that

 could have been observed. This is conditional on a set of

 network statistics that can include vertex- and edge-level

 exogenous variables and endogenous dependencies; the
 results is a substantial increase in the scope of mode
 lable dependencies without any independence assump
 tions. This produces a single, multivariate distribution
 from which the network of interest is most likely to be
 drawn.

 The ERGM is structured as follows:

 where h(N) is a vector of statistics computed on the net
 work N with the same number of elements as 0, and M

 refers to the set of all possible permutations of the network

 N—from entirely empty to entirely complete—with the
 same number of vertices (Cranmer and Desmarais 2011).

 As such, the ERGM literally computes the probability of
 the network we observed over the networks we could have

 observed.

 The ERGM requires two assumptions. First, one must

 assume that there is equal probability of observing any two
 networks with the same values of the statistics included

 in the specification. This is functionally the same as as

 suming that a model is completely and correctly specified.
 Consider two networks that are identical with respect to

 the values of the statistics computed in h(N), for exam

 ple, the number of closed triads. If one of these networks

 is more likely than the other, something not included
 in the model is causing that imbalance. By implication,
 the model would be incompletely or incorrectly speci
 fied. The second assumption is that the observed net
 work exhibits the average value of those statistics over the

 networks that could have been observed. This assump

 tion is necessary to identify the parameters, but it is not

 different in practice from the assumption made in re

 gression models that the average relationships in a data
 set are representative of the population (Cranmer and
 Desmarais 2011).

 All effects in the ERGM are included as statistics com

 puted on the network in the vector h(N). Exogenous co
 variates, both at the edge and vertex levels, are included

 in the ERGM through statistics computed as

 (3)

 (4)
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 ment of the dependence statistics includable in an ERGM.

 The ERGM is also special in that, unlike many statistical
 models, it represents a complete and proper probability
 model of the entire network and network data-generating

 process.3
 ERGMs are generally estimated in one of two ways.

 Markov chain Monte Carlo maximum likelihood esti

 mation (MCMC-MLE) is the preferred method for es
 timating cross-sectional (single network at a single time
 period) ERGMs (Geyer and Thompson 1992; Hunter and
 Handcock 2006; Snijders 2002; Snijders et al. 2006; van
 Duijn, Gile, and Handcock 2009). An alternative method
 of estimation is called maximum pseudolikelihood es
 timation (MPLE) (Hyvarinen 2006; Strauss and Ikeda
 1990). MPLE is substantially less computationally diffi
 cult than MCMC-MLE, but it has the problem that con
 fidence measures are downwardly biased. This problem is
 correctable when using this technique on longitudinally
 observed networks (Desmarais and Cranmer 2012b). For
 details on both of these estimation routines and a di

 rect comparison of the two, see Desmarais and Cranmer
 (2012b).

 Yet the ERGM is not without its disadvantages. First,
 we mentioned that the ability to model specific forms of

 interdependence is an advantage of the ERGM, and it is,
 but it is also a disadvantage. Because an ERGM without
 any endogenous dependencies in its specification reduces

 to a standard logistic regression model, the researcher
 must model the endogenous dependencies and must also
 specify them in a complete and correct manner (oth
 erwise, the model will be misspecified). This places an
 increased burden on the researcher, who may be primar
 ily interested in the role of an exogenous covariate, to
 accurately model the generative structure of the network.

 Researchers wishing to avoid this additional modeling
 duty will find techniques like the QAP and latent space
 model (LSM) more appealing than the ERGM because
 such models condition out dependencies without requir
 ing the researcher to specify them. A second disadvantage

 3While we have discussed the ERGM in its basic form, which is tai
 lored to binary cross-sectional networks, the ERGM extends to lon
 gitudinally observed networks through a technique called the Tem
 poral ERGM (TERGM) (Hanneke, Fu, and Xing 2010; Desmarais
 and Cranmer 2012b) or a related technique called the stochas
 tic actor oriented model (SAOM) (Snijders 2001; Snijders, van de
 Bunt, and Steglich 2010) that assumes a more specific updating
 process between observed networks (Leifeld and Cranmer 2014).
 The ERGM also extends to networks with valued edges (called the
 Generalized ERGM or GERGM) (Desmarais and Cranmer 2012a).
 A detailed treatment of these extensions is beyond the scope of the
 present discussion, but we do note that both extensions maintain
 the basic conceptual logic of the ERGM and both are well imple
 mented in the xergm package (Leifeld, Cranmer, and Desmarais
 2016).

 Figure 1 Examples of Canonical
 ERGM Statistics

 network, and the right panel illustrates transitivity in a
 directed network.

 This statistic accepts a relational matrix X with the same
 dimensions as the outcome network N and simply sums
 over a dyad-wise product. So, for the case where X cap
 tures a relational covariate measured at the ij dyad level,
 the most natural type of covariate for this model, one is

 simply summing over the values of Xjj for which the cor
 responding edge in the outcome network Njj exists. Even
 though relational covariates are included most naturally,

 vertex-level covariates are also included easily: One need
 only to "scale up" the vertex-level covariate Z, such that

 Xtj = Z,.
 The ERGM is also designed to accommodate a great

 variety of endogenous dependencies, also as statistics
 in the h(N) vector. However, since the endogenous ef
 fects will capture different forms of interdependence, they

 must be specified differently, and no single formula exists

 for articulating them as in Equation (4). Consider two
 examples of endogenous dependencies includable in the
 ERGM. First, consider reciprocity. This effect is endoge

 nous because it occurs only within the outcome network
 (e.g., i considers j a friend, and j considers i a friend as
 well). Reciprocity is illustrated in the left panel of Figure 1

 and may be written as

 hR(N) = J2 NijNji, (5)
 <<;

 where we see that this statistic counts the number of recip

 rocal relationships in the network. Second, a slightly more

 complicated example is the transitivity effect. Transitivity

 is specified, in a directed network, as

 hT(N) = J2 NHN*Njk> (6)

 and it is illustrated in the right panel of Figure 1. Nearly
 any form of interdependence can be included in the
 ERGM specification. The major restriction on the spec
 ification and inclusion of such effects is that they must
 be articulable as sums of subnetwork products. See Mor
 ris, Handcock, and Hunter (2008) for an extensive treat
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 242  SKYLER J. CRANMER ETAL.

 of the ERGM is that it can be prone to numerical in
 stability in the estimation process, even when there is
 a theoretically intuitive specification. In particular, this

 problem makes the effective estimation of model speci
 fications that fit the data very poorly difficult to achieve.

 This is perhaps a blessing in disguise, as it means that poor

 models cannot be fit (Cranmer and Desmarais 2011), but

 making sure that one's model fits the data reasonably well

 can be challenging, especially for networks in which the

 density of connections is either very sparse or very dense.

 Latent Space Network Models

 Latent space models were introduced by Hoff, Raftery,

 and Handcock (2002) and operationalize dependence
 between observations through the notion of a k
 dimensional "social space." The idea is that relations are

 transitive: If vertices i and j are tied and vertices j and
 k are tied, i and k are also likely to be tied directly. The

 positions of vertices in the latent space retain this tran

 sitivity in terms of the distances between vertices: Vertex

 pairs with a large (Euclidean or other) distance between
 each other in the latent space have large path distances in

 the observed network while proximate vertex pairs in the

 latent space have small path distances in the observed net

 work. Latent space models are generalized linear models
 on dyadic observations that control for these dependence

 structures by conditioning on the distance between the

 vertices' latent space positions.

 In these models, the observations Ny in network ma
 trix N are conditionally independent given dyadic covari

 ates Xy, their parameters 0, and the positions z,- and Zj in
 the latent social space (for details on this exposition, see

 Hoff, Raftery, and Handcock 2002). Thus, the probability

 of observing the network is the product of the individual

 probabilities for each dyadic observation, given the co
 variates, their estimates, and the latent space positions of

 i and j:

 P(N\Z, X, 6) = Y\ P(Nij\zi, Zj, Xy, 0). (7)

 In other words, the dependencies between different dyads

 Njj are relegated to the coordinates of individual vertices
 i and j in the latent space, and these positions are esti
 mated along with the parameters for the covariates. The

 estimation of positions for all vertices in the network adds

 a substantial number of parameters to the model, and, in

 this way, a latent space network model may be thought of

 as an elaborately specified random effects model.

 As in the ERGM and QAP context, the Xjj covariates
 can include relational information (e.g., do i and j have

 the same attribute value?) or information on any of the

 two vertices involved (e.g., an attribute of i irrespective of

 the attribute value of j or an attribute of j irrespective of

 the attribute value of z). There can be multiple covariates,

 and all covariates are saved in matrices conforming to
 the dimensions n x n of the outcome network matrix N.

 This means that the practical data preparation needed to

 run a latent space model is identical to that needed to run
 an ERGM.

 The dyadic tie probabilities tty can be expressed as
 log odds, which results in a logistic regression equation.

 The probability of each pair of vertices Njj being tied is
 a function of the distance between i and j in the social

 space. This distance is most often the Euclidean distance

 between the positions z, and z; over the k dimensions of
 the latent space:

 Tty = logodds(Ny - 1 |zj, Zj,Xij, a, ß)

 = a + ß'x,j — |z; — Zj\. (8)
 Alternatively, other distance measures between z, and Zj

 can be chosen (e.g., +j^ instead of — |z* — Zj |; for an
 example, see Hoff and Ward 2004). However, the distances

 must satisfy the triangle inequality,

 dij < dik + dkj V{i, j, k], (9)
 meaning that any direct distance between i and j should

 not be larger than distances over indirect paths between i

 and j through other vertices k. This condition essentially

 constitutes the latent social space.

 The goal of the estimation process in a latent space
 model is primarily to find a distance matrix D that satis

 fies the triangle inequality and thus maps the dependence
 structure in the network matrix to a matrix of distances

 where adjacent vertices in the network have smaller dis

 tances than nonadjacent vertices, controlling for the co

 variates. This is done by maximization of

 log P{N\t]) = T\ijyij - log( 1 + e1*'). (10)

 where the distance matrix and covariates enter the likeli

 hood via r\ij as defined in Equation (8). A matrix of initial

 distance values must be provided to the estimation rou
 tine. It is often sufficient to compute a distance matrix

 based on N using a measure such as the path distance be

 tween any i and j or the Euclidean distance between the

 rows of N. In more complicated cases, it maybe necessary

 to maximize the log likelihood without covariate parame

 ters first in order to get estimates for D and then use these

 estimates as initial values for the full optimization of the

 likelihood including the covariates as defined in Equa
 tions (8) and (10). After computing the initial distances,

 the vertex positions in the latent space Z can be recov
 ered by applying multidimensional scaling (MDS) to the
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 distance matrix. As different MDS solutions with arbi

 trarily rotated, reflected, or translated coordinates yield

 the same fit, a Procrustes transformation is applied to
 the MDS coordinates (for details, see Hoff, Raftery, and
 Handcock 2002).

 For illustration, suppose the network of international

 militarized interstate disputes is to be modeled. First, one
 must define the relational conflict matrix (N) and the co

 variate matrices X (e.g., trade, contiguity). Second, one
 computes a matrix of, for example, the path distances
 in the conflict network. Third, one recovers each coun

 try's coordinates in a low-dimensional space from the
 path distance matrix by multidimensional scaling (for
 a primer, see Jacoby and Armstrong 2014; Rabinowitz
 1975). Fourth, one uses these rough positions as start

 ing values for nonlinear maximization of the log likeli
 hood in conjunction with a Euclidean model of space
 (as defined in Equation 8). This yields estimates for
 the latent positions Z controlling for the covariates X.
 The covariate estimates can be interpreted substantively

 because network dependence has been controlled for via

 the estimated latent positions, and the positions can be
 used for description of the network, similar to descriptive

 uses of techniques like multidimensional scaling (Jacoby

 and Armstrong 2014; Rabinowitz 1975) when applied to
 network data.

 Compared to the QAP and ERGM, latent space mod
 els have a number of advantages and disadvantages. Often

 cited as an advantage is the fact that latent space models

 can be applied to outcome networks with binary or val
 ued data of any distributional shape. Yet the same is true
 for the QAP, and a recent ERGM advance in the form of

 the generalized ERGM (GERGM) renders the same true
 for ERGMs (Desmarais and Cranmer 2012a).

 Latent space models relegate network dependencies
 to the latent social space and estimate them automatically.

 This makes latent space models easy to use. Yet the model
 is less flexible than an ERGM because substantive the

 ory related to the dependencies cannot be tested. In this

 sense, latent space models have a similar strength (and
 weakness) as the QAP. Yet one is required to specify the
 distance measure and the number of dimensions of the la

 tent social space, which puts latent space models between

 the QAP and ERGMs with regard to the theoretical elabo

 ration and required user skills. The choice of the distance

 measure and the number of dimensions is rarely guided

 by theory; it is a trade-off between model fit and parsi

 mony because more dimensions generally accommodate
 the dependencies better, but each additional dimension

 introduces nonlinearly more parameters. For illustration,

 a latent space model typically has an intercept, several co

 efficients for covariates, and n parameters per dimension

 of the latent space. This reveals a potential disadvantage of
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 latent space models vis-à-vis the QAP and ERGM: They
 explain the same network structure but need many more

 parameters and are therefore less parsimonious. This is
 especially problematic in situations where few vertices are

 present because there may be ultimately more parameters
 than observations.

 Finally, interpretation of the coefficients for exoge

 nous covariates may not always be straightforward: If the

 latent positions or distances are correlated with exoge
 nous covariates, the coefficients may in fact indicate the

 opposite direction of the actual effect in the presence of

 the confounding positions or distances. While endoge
 nous model terms may be correlated with exogenous ef

 fects in ERGMs as well, these problems are easier to detect
 and fix in ERGMs.

 Weighing these advantages and disadvantages, latent

 space models are an attractive choice if there are no or

 few isolates, if parsimony is not of primary importance,

 if there are enough observations, if the interdependen
 cies are not theoretically interesting, and/or in situations

 where it makes sense to visualize and interpret the latent

 positions (e.g., political ideology). There are better mod
 els available when the dependencies are substantively in

 teresting or when many isolates or few observations exist.

 Illustrative Example: Policy Network
 Collaboration

 To illustrate the strengths and weaknesses of the three

 models, we apply each to a simple, cross-sectional policy

 network on relations between 34 political actors in the

 Swiss climate change mitigation network (Ingold 2008).
 We reanalyze her data set with a logit model and the
 network methods described above. Our results show that

 all three network models outperform the standard logit

 estimates on multiple criteria, with the ERGM performing
 best overall.4

 The directed outcome network reflects collabora

 tion among four government agencies, five political par

 ties, six scientific/research organizations, 11 organized in

 terest groups (private-sector and business associations),

 and seven environmental nongovernmental organiza
 tions (NGOs; Ingold 2008; Ingold and Fischer 2014).

 Exogenous Dependencies

 We follow Ingold and Fischer (2014) with respect to
 model specification. See the supporting information for a

 4This result is robust to multiple specifications of the logistic re
 gression; see the supporting information for further details.
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 detailed theoretical discussion. We break down our exoge

 nous specification by theoretical mechanism.

 1. Conflicting Policy Preferences. We expect little
 collaboration between conflictual interests, such

 as business and environmental groups.

 (a) Business vs. NGO (expectedeffect: neg
 ative). Whether the tie sender is an NGO and

 the potential receiver is a business associa
 tion or vice versa.

 (b) Preference dissimilarity (expected
 effect: negative). A dissimilarity matrix be

 tween the 34 actors over four important pol

 icy issues using Manhattan distances.

 (c) Opposition/alliance (expected effect:
 positive). A measure of perceived policy sim

 ilarity.

 2. Transaction Costs. The literature suggests other
 mechanisms for collaboration between actors,

 such as transaction costs associated with acquir
 ing contacts (Leifeld and Schneider 2012).

 (a) Joint forum participation (ex
 pected effect: positive). Indicator for
 whether i and ; are members of the same
 policy forums.

 3. Political Influence. Actor i tends to collaborate

 with j if i deems j influential in the policy pro

 cess because this is instrumental for achieving

 policy objectives (Ingold and Leifeld 2016).

 (a) Influence attribution (expected ef
 fect: positive). Indicator for whether an or

 ganization considers another organization
 "particularly influential."

 (b) Alter's influence indegree (ex
 pected effect: positive). Each cell X,j
 contains the indegree of column actor j in
 the influence attribution network.

 (c) Influence absolute diff. (expected
 effect: negative). Absolute difference be
 tween the influence indegree of i and the
 influence indegree of j.

 (d) Alter = Government actor (expected
 effect: positive). Tests whether state actors

 are popular collaboration targets.

 4. Functional Actor Role Requirements.

 (a) Ego = Environmental NGO (expected
 effect: positive). Indicator for whether ego
 is an environmental NGO.

 (b) Same actor type (expected effect: posi
 tive). Indicator for whether i and j are the

 same type of organization, and thus likely
 functionally interdependent.

 SKYLER J. CRANMER ETAL.

 (c) Mutuality (expected effect: positive). If i
 collaborates with j, j likely collaborates with

 i (Equation 5 and Figure l).5

 Endogenous Dependencies

 The QAP and latent space models do not require or allow

 explicit specification of endogenous dependencies; only

 the ERGM does that. The downsides of this flexibility are

 that a theoretical understanding of the endogenous part

 of the data-generating process is required, and the analyst

 must be familiar with the different ways that dependencies

 can be modeled. In the ERGM reported below, we include

 the following endogenous model terms.

 1. Two-paths (expected effect: negative). This
 term counts the number of two-paths, config
 urations of ties ij k where vertices i and k are not

 directly tied, in the collaboration network. Ef
 fectively, the coefficient indicates whether two

 paths are more or less prevalent than in a random

 graph. We expect a negative coefficient because

 collaboration often expands to more than two

 interconnected actors, leading to a tendency of
 triadic closure rather than open triangles/two
 paths.

 2. Edge-wise shared partners (GWESP)
 (expected effect: positive). This term counts
 the number of shared partners (e.g., transitive
 indirect ties) for each tied actor pair and adds
 up the shared partners to the count, but it places

 lower weight on each additional shared partner.

 This geometric decay is governed by an a
 parameter. For instance, a = 0 would place the
 same weight on edges with one shared partner
 and edges with any number of shared partners.

 The parameter is set by the user, and its choice

 is usually guided by model fit. A positive GWESP

 coefficient means that there is a tendency for
 multiple indirect ties of length two between
 directly tied actors. Transitive relationships are

 presumably formed because actors find it less
 costly to connect to other actors directly if an

 indirect tie already exists, which makes it a
 mechanism along the lines of transaction cost
 politics (Leifeld and Schneider 2012).

 3. Outdegree popularity (expected effect:
 positive). This term captures the tendency of i
 to connect to j the more outgoing ties j has.

 5Note that this endogenous effect can be included as a covariate
 in a simple logistic regression model, which is not possible for
 higher-order dependencies like triadic closure.
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 Intuitively, actors with many ongoing collabo
 rations are attractive collaboration partners for

 new actors. The term therefore operationalizes
 clustering of collaborations around some active
 vertices in the network.

 4. GWIdegree and GWOdegree (expected effects:
 positive). These terms capture activity and
 popularity, respectively. They parameterize the

 distributions of the number of incoming and
 outgoing collaborations per vertex using an a
 decay parameter. Intuitively, larger numbers of

 incoming (outgoing) ties are geometrically dis
 counted when the indegrees (outdegrees) are
 summed in the statistic. These terms therefore

 capture network structures with some highly
 popular or active agents.

 Goodness-of-Fit Comparison

 Before comparing the substantive results of the four mod

 els, it is important to assess their respective fit. One of the

 many advantages of network analysis is that it is generally

 a simple matter to check the overall fit and performance

 of a model. Goodness-of-fit assessment, prior to consid
 eration of the substantive results, is important. After all,

 if the model fits the data poorly, one would not expect the

 results to have any bearing on the data-generating pro
 cess, and so they would be of no interest to the analyst.

 We consider that a model should pass at least a basic test

 of its fit to the data prior to the analyst investing the time
 to understand that model's substantive results.

 Figures 2, 3, 4, and 5 plot several characteristics of
 model-based simulations against the observed collab
 oration network for each of the models. This is an easy
 way to determine whether a model captures network
 dependencies. For example, simulated networks should

 have the same distribution of path distances or roughly

 the same numbers of shared partners per dyad as the
 observed networks. Failing to capture the dependencies
 is a form of omitted variable bias. The diagrams show
 distributions of several typical endogenous network
 properties that can serve as benchmark criteria for
 comparing the observed network with 100 simulated
 networks based on the model and the covariates. If the

 model captures the dependencies well, the black line,
 which represents the values of the observed network,

 should pass approximately through the medians of
 the boxplots, which represent the distributions of the
 network statistics in the 100 simulated networks.

 The estimated ERGM (Figure 5) is relatively accurate

 with regard to these auxiliary statistics, with very few ex

 ceptions: Indegrees of 4,5, and 16 and outdegrees of 6 are

 slightly underrepresented in the ERGM, but adjusting the

 model to accommodate these oddities would likely mean

 overfitting the data. The logistic regression (Figure 2), in

 contrast, displays much stronger deviations between sim

 ulations and the observed network. The edge-wise shared

 partner, indegree, and outdegree distributions of the sim

 ulations and dyads with zero shared partners are not in

 line with the observed network. The QAP model (Fig
 ure 3) and the latent space model (Figure 4) fare between

 the logit and the ERGM in terms of endogenous fit: In the

 latent space model, indegree and outdegree, and edge
 wise shared partners are more accurate than in the logit

 model, but not as accurate as in the ERGM; zero dyad-wise

 shared partners fit well (in contrast to the logit model),

 but shortest paths of length two and infinity are slightly

 off the mark. The QAP model has similar fit to the logit

 model; only in-stars fit somewhat better. The conclusion

 from this goodness-of-fit assessment is that the ERGM is

 largely unbiased because its endogenous network depen
 dencies are correctly specified, whereas latent space, QAP,

 and logit models are less accurate, in descending order of

 quality.

 Substantive Comparison

 ERGMs may yield a better fit, but does the difference be
 tween models affect the substantive results? Table 1 shows

 the estimated coefficients for all four models. While many
 results are consistent across different models, there are

 several coefficients that differ in their magnitude, signifi
 cance, and even direction across models. In other words,

 different modeling strategies sometimes result in different
 substantive conclusions, which renders model selection

 based on endogenous fit an important task.

 For example, the Business vs. NGO effect can be
 confirmed in all of the network models, whereas the logit

 model shows an insignificant effect due to unmodeled
 dependencies. This highlights our point that appropri
 ate treatment of dependencies between observations can
 make a substantive difference.

 On the other hand, there are profound differences

 between the three network models. For example, the
 Alter = Government actor model term has a pos
 itive but insignificant effect in the QAP model, a posi
 tively significant effect in the ERGM, and a negative and

 insignificant effect in the latent space model. It is un

 clear in principle which model is "right." Yet, given that

 the dependencies have been most accurately captured by

 the ERGM, the positively significant effect in the ERGM

 seems most trustworthy. It is also in line with the theo

 retical prediction.
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 Figure 2 Logit Model: Goodness-of-Fit Assessment
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 Figure 3 MRQAP Model: Goodness-of-Fit Assessment
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 Figure 4 Latent Space Model: Goodness-of-Fit Assessment and Estimated Positions of Actors

 Latent Space Model: Goodness of Fit
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 Figure 5 ERGM: Goodness-of-Fit Assessment
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 Table 1 Comparison of Logit, QAP, LSM, and ERGM Coefficients and Uncertainty Measures

 Logit  MRQAP  LSM  ERGM

 Intercept/edges

 Conflicting policy preferences
 Business vs. NGO

 Opposition/alliance

 Preference dissimilarity

 Transaction costs

 Joint forum participation

 Influence

 Influence attribution

 Alter's influence indegree

 Influence absolute diff.

 Alter = Government actor

 Functional requirements

 Ego = Environmental NGO

 Same actor type

 Endogenous dependencies

 Mutuality

 Outdegree popularity

 Two-paths

 GWIdegree (2.0)

 GWESP (1.0)

 GWOdegree (0.5)

 -4.44*

 (0.34)

 -0.86

 (0.46)
 1.21*

 (0.20)
 -0.07

 (0.37)

 0.88*

 (0.27)

 1.20*

 (0.22)
 0.10*

 (0.02)
 -0.03*

 (0.02)
 0.63*

 (0.25)

 0.88*

 (0.26)
 0.74*

 (0.22)

 1.22*

 (0.21)

 -4.24*

 -0.87*

 1.14*

 -0.60

 0.75*

 1.29*

 0.11*

 -0.06*

 0.68

 0.99

 1.12*

 1.00*

 0.95*

 [0.10,1.82]

 -1.37*

 [-2.40, -0.41]
 -0.00

 [-0.40,0.40]
 -1.76*

 [-2.60, -0.91]

 1.52*

 [0.86, 2.19]

 0.08

 [-0.41,0.54]
 0.01

 [-0.03,0.04]
 0.04

 [-0.01,0.09]
 -0.46

 [-1.09, 0.13]

 -0.60

 [-1.31,0.09]
 1.17*

 [0.61,1.70]

 -12.17*

 (1.39)

 -1.11*

 (0.51)
 1.22*

 (0.20)
 -0.45

 (0.39)

 0.90*

 (0.28)

 1.00*

 (0.21)
 0.21*

 (0.04)
 -0.05*

 (0.01)
 1.04*

 (0.34)

 0.79*

 (0.17)
 0.99*

 (0.23)

 0.81*

 (0.25)
 0.95*

 (0.09)
 -0.04*

 (0.02)
 3.42*

 (1.45)
 0.58*

 (0.16)
 8.42*

 (2.09)
 BIC  808.72  776.41  855.89  683.03

 Note: *p < .05 (or 0 outside the 95% confidence interval).

 Another important observation is that the latent
 space model deviates in many cases from the results of the

 QAP and ERGM. This happens in cases where a model
 term is correlated with the latent position of a vertex. The

 latent space satisfies the triangle inequality: Vertices with

 a path distance of g are placed closer to each other than

 vertices with a path distance of g + 1, for any g. The con

 sequence is that central actors are placed centrally in the

 latent space because they have smaller average path dis
 tances to any other vertex. Examples are the Swiss Agency

 for the Environment, Forests and Landscape (BUWAL)
 and the Swiss Petrol Union (EV), which are at the center

 of the latent space (see the actual latent space in the last

 panel of Figure 4) and also have large indegree, closeness,

 (0.37) [-2.60, -

 0.88* 0.75* 1.52

 (0.27) [0.86,2

 1.20* 1.29* O.Of

 (0.22) [-0.41,
 0.10* 0.11* 0.01

 (0.02) [-0.03,
 -0.03* -0.06* 0.0'

 (0.02) [-0.01,
 0.63* 0.68 —0.4

 (0.25) [-1.09,

 0.88* 0.99 -0.6

 (0.26) [-1.31,
 0.74* 1.12* 1.17

 (0.22) [0.61,1
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 Table 2 Comparison of Three Models for Inferential Network Analysis

 Criterion  QAP  ERGM  LSM

 Operationalization of relational theories

 Easy to specify and interpret

 Parsimonious (= few parameters needed)

 Reports standard errors

 Avoids problems with oversensitivity of dependencies
 Simulations do not suffer from omitted variable bias

 Avoids numerical instability (= degeneracy)

 Unbiased under arbitrary empirical distributions

 Flexible with respect to outcome distribution

 Temporal specifications are available

 Spatial visualization and model-based clustering

 Full-fledged statistical model

 Availability in standard statistical software

 and betweenness centrality scores. Since many govern
 ment actors are central players, the Euclidean distances

 pick up the government covariate as part of the depen
 dencies. The consequence of this trivariate correlation
 between distance in the latent space (or centrality in the

 network), the link receiver (alter) being a government
 actor, and, link sender (ego) sending information to the

 receiver is that controlling for latent distances reverses

 the coefficient for the covariate (or makes it insignifi
 cant in other cases). This is why we see a negative coeffi

 cient for the receiver being a government actor, whereas

 the QAP and the ERGM show the opposite. Thus, while

 latent space models offer an easily interpretable visual
 representation of social distance (last panel of Figure 4),

 this may also cause interpretability issues when covari
 ates are correlated with the latent space and the out
 come network. Further, including random sender and
 receiver effects, as is possible in the standard model, does

 not rectify the problem. A potential remedy is to use
 specifications of the latent space that explicitly correct

 for the activity and prominence of vertices via a bilin
 ear model (Hoff, Raftery, and Handcock 2002; Hoff and
 Ward 2004).

 The Bayesian information criterion (BIC) at the bot
 tom of the table indicates that the ERGM offers the

 most preferable combination of model fit and number

 of parameters. The BIC can be compared across the dif
 ferent models because the same data are modeled. The

 QAP is slightly better than the logit, and the latent space

 model—even though it does a better job of capturing the

 dependencies than the logit and QAP—has the largest
 BIC value because of its many parameters.

 Overall, the models confirm most of the hypothe
 ses. The analysis confirms earlier findings that preference

 (dis)similarity is rendered unimportant if transaction

 +

 + - o

 + O -

 - + +

 + +

 - + +

 + - +

 + +

 + + +

 + +

 - - +

 - + +

 + + +

 cost considerations in terms of joint forum participation

 (Leifeld and Schneider 2012) and structural properties of

 the network are properly taken into account. Moreover,

 we find that collaboration in policy networks is a func
 tion of conflicting actor roles, influence attribution, and

 functional requirements.

 Concluding Thoughts on Method Selection

 Given the advantages and disadvantages of the models
 considered here, which model is preferable? Table 2 sum
 marizes the characteristics of the models. Four criteria,

 in no particular order, should be considered: parsimony,

 interpretability, theoretical focus, and ease of use.

 With regard to parsimony, the latent space model is

 the least appealing because, in addition to the covariates,

 a separate parameter is estimated for each actor's latent

 position times the number of dimensions of the latent
 space. This is reflected in the relatively bad BIC value re

 ported in Table 1. The QAP is the best choice with respect

 to parsimony because only the 12 (exogenous covariate)
 parameters are used. With QAP, the data can be described

 using relatively little external information. The ERGM has

 additional parameters for the endogenous dependencies,

 but it is still relatively parsimonious.

 With regard to interpretability, the QAP fares
 worst because dependencies cannot be inspected at all.
 Moreover, one must be careful about bias when the

 network to be modeled is sparse and some predictors
 are collinear; such cases may be common because many

 empirical networks have low density. The latent space
 model allows one to visualize the latent space and inter
 pret it substantively, and the ERGM provides parameters

 for each endogenous part of the data-generating process;

 both the latent space model and the ERGM allow

 n

 malization of relational theories

 pecify and interpret

 lious (= few parameters needed)
 standard errors

 roblems with oversensitivity of dependencies
 ons do not suffer from omitted variable bias

 umerical instability (= degeneracy)

 1 under arbitrary empirical distributions

 with respect to outcome distribution

 QAP ER

 +

 +

 +

 +

 +
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 simulation-based goodness-of-fit assessment. This is
 also possible with the QAP, but due to the way the QAP

 corrects for dependencies rather than modeling them,
 simulations based on a QAP model do not include any
 complex dependencies that may be important for the
 data-generating process. This is reflected by the relatively

 bad endogenous model fit in Figure 3. The case study
 also illustrates that interpretability of the latent space
 model can be limited in some situations where covariates

 have to be evaluated as predictors of edges independently

 of the latent space, at least when Euclidean distances
 are used or when a bilinear model without activity and

 popularity corrections is employed.

 With respect to theoretical focus, the ERGM is
 the only real option if a substantive theory about the
 types of dependencies shall be tested; neither the latent

 space model nor the QAP allow for hypothesis testing
 of different, nuanced dependency structures. On the
 other hand, if the goal is to test substantive theory about

 the exogenous covariates only and the dependencies are

 merely a nuisance, the QAP and the latent space model
 allow one to do this without having to worry about the

 structure of the dependencies. It would be presumptuous

 for us to suggest that one model is superior to the others.

 The choice must depend upon the aims of the research,
 the theory, and the nature of the data. To the extent that

 an analysis is mainly concerned with network interde
 pendency as a threat to analysis or wants to get a "clean"

 test of the relationships between the outcome network

 and exogenous covariates, the QAP is often sufficient. If

 an analyst wants a model that can account for omitted
 variable bias, can be interpreted graphically, and can be
 used for more than simple dyadic connections, use of the

 latent space model would work well. Finally, the ERGM is

 potentially the most powerful model when network struc
 ture is of interest in addition to the covariates, but it is also

 the most difficult to apply from an end user's perspective.
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