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Four.  Organising and Analysing Network Data
This chapter will explore:
Ways of organising and storing network dataTables, matrices and sociograms
Undirected, directed and valued data
Computer programs for social network analysis



It is often quite straightforward to analyse very small data sets. Sociograms for four- or five-person groups, for example, can easily be constructed by hand and their properties can be visually inspected. However, this becomes much more difficult with larger networks. When dealing with data sets that have more than about ten cases and five relations, it is all but essential to use a computer. Computer processing saves a considerable amount of time: the data rearrangement undertaken by Homans in his investigation of the participation of 18 women in 14 social events, for example, can be undertaken on a computer in a few seconds at most. Use of a computer also allows analyses to be undertaken that are simply not possible by hand.
When relational data are properly prepared and stored, they can be managed and manipulated more efficiently. It is important, therefore, to consider how the logical structure of the data set can be translated into a computer file. The first step is often to sort names of individuals, organisations, or events in order to generate listings that can be analysed for their connections. Research on interlocking directorships, for example, involves generating a list of directors in the target companies, sorting this list into alphabetical order, and then identifying those names that appear two or more times. The most straightforward method for doing this is to use a word processor or spreadsheet program, as the names can be entered as text and then sorted and edited. These programs will allow data to be sorted into alphabetical or numerical order as an aid to its analysis and manipulation.1 This is an essential first step whenever data are in a raw form that may require cleaning before use: it may be necessary to discover, for example, whether John Smith, J. Smith, and John H. Smith are the same person or, perhaps, two or three different people.
The most usual outcome of this kind of processing is a data set in a ‘linked list’ format. In a linked list, each line in the file shows a specific case followed by its affiliations or relations. It might show, for example, the name of a director followed by the names of all the companies of which he or she is a director (or it may show this in coded, label form). Specialist computer programs and general spreadsheets such as Excel, allow the use of linked lists and make it possible to store the labels and further data attributes (gender, age, income, etc.) for each case.
Even the simplest of spreadsheets can be used to store and to organise relational data, and they can be used to prepare these data in files readable by other specialist packages. The ‘range’ options can be used to specify particular parts of a table for copying to a new file. If, for example, a table of friendship relations among people is stored in a file, it is possible to select the male or the female data alone for separate analysis. A spreadsheet can also be used for basic network procedures. If the data have been converted from linked lists to tables in binary or valued form, a spreadsheet can be used to calculate basic statistical measures, such as row and column sums, frequency distributions, and correlations. Many of these measures can be converted into screen graphics and then printed out. Frequency distributions, for example, can be instantly plotted on a histogram or bar chart. While the major mathematical functions built into spreadsheets are the kind of financial and statistical procedures most appropriate for variable analysis, it is also possible to use matrix mathematics to calculate various structural properties of networks.2 However, use of a spreadsheet beyond the most basic measures is probably best attempted only if other programs specifically designed for social network analysis are not available. The principal use of the spreadsheet should be to store the data and to carry out the straightforward data management functions of rearrangement and manipulation.3
The major software programs for social network analysis – discussed later in this chapter – store their data in simple table form as a linked list, and it is easy to transfer an appropriate file directly from a spreadsheet to these programs.4 For most purposes, it is best to import data into one of the specialist packages as early as possible, reading it back into a spreadsheet only when attribute data have to be added and used in statistical analyses. In these circumstances, in fact, it may be preferable to export the data files to a specialist statistical package such as SPSS.


Matrices and Relational Data
The tables into which social research data can be entered are various kinds of ‘data matrix’ (Galtung, 1967). At its simplest, a data matrix appears as a pattern of rows and columns drawn on paper or displayed on a computer screen. Whatever the physical form that it takes, the logical structure of a data matrix is always that of a simple table. In research using attribute data, each case studied (for example, each respondent in a survey) is represented by a row in the matrix, and the columns refer to the variables that measure their attributes. This is a case-by-variable matrix, and Figure 4.1 shows a simple form of such a data matrix. This is the way in which data are organised for most standard statistical procedures.
The case-by-variable data matrix cannot be used for relational data. These data must, instead, be seen in terms of a case-by-affiliation matrix. The cases are the particular agents that form the units of analysis (for example, individuals or organisations), and the affiliations are the activities, organisations or events in which these agents are involved. The columns of the matrix, then, refer to the affiliations in terms of which the involvements, memberships or participations of the agents can be identified. The case-by-affiliation matrix is the logical form of what, in the previous section, was referred to as the linked list. From this case-by-affiliation matrix, information can be derived on the direct and indirect connections among the agents. In Figure 4.2, for example, a simple case-by-affiliation matrix is shown for the involvement of three people (labelled 1, 2 and 3) in three events (labelled A, B and C). Where a specific individual participates in a particular event, there is a ‘1’ in the corresponding cell of the matrix; non-participation is shown by a ‘0’ entry. It can be seen that all three people participate in event A, but none of them is involved in events B or C. Thus, the sociogram that can be drawn from this matrix shows a simple triad of mutual contacts among the individuals. The sociogram can be read as saying that each person meets the other two at a particular event.
Figure 4.1 A data matrix for variable analysis
[image: Figure 9]
It can be quite difficult to construct sociograms for even moderate-sized data sets. Lines will criss-cross one another at all sorts of angles to form a thicket of connections, and any visual appreciation of the structure is lost. Indeed, it may be quite impossible, using conventional manual methods of drawing, to construct a sociogram for a large network. For this reason, social network analysts have attempted to find alternative ways of recording the connections. Following the principle of the data matrix, the solution that has been most widely adopted has been to construct a case-by-case matrix in which each agent is listed twice: once in the rows and once in the columns. The presence or absence of connections between pairs of agents is represented by ‘1’ or ‘0’ entries in the appropriate cells of the matrix. This idea is not, perhaps, as immediately comprehensible as the sociogram, and so it is worthwhile spelling it out at greater length.
Figure 4.3 shows the general form of data matrices for social networks. The most general form for raw or coded data is what I have called the case-by-affiliation matrix, a linked list in which agents are shown in the rows and their affiliations in the columns. Such a matrix is described as being ‘two-mode’ or ‘rectangular’, because the rows and columns refer to two different sets of data and so the number of rows and the number of columns are generally different.5 From this basic rectangular data matrix can be derived two square, or ‘one-mode’, matrices. In the square case-by-case matrix both the rows and the columns represent the cases, and the individual cells show whether or not particular pairs of individuals are related through a common affiliation. This matrix, therefore, shows the actual relations or ties among the agents. It is exactly equivalent to the sociogram in the information that it contains. The second square matrix shows affiliations in both its rows and its columns, with the individual cells showing whether particular pairs of affiliations are linked through common agents. This matrix, the affiliation-by-affiliation matrix, is extremely important in network analysis and can often throw light on key aspects of the social structure that are not apparent from the case-by-case matrix. These one-mode matrices show the relations among the particular members of the network and much network data may be directly available in this form without having to be derived from a two-mode matrix. For example, friendship choices among the children in a particular secondary school class or kinship relations among those living in a particular village will take this form.
Figure 4.2 A simple matrix and sociogram
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Figure 4.3 Matrices for social networks
[image: Figure 11]
Thus, a single rectangular matrix of two-mode data can be transformed into two square matrices of one-mode data.6 One of the square matrices describes the rows of the original matrix and the other describes its columns. Nothing is added to the original data, the production of the two square matrices being a simple transformation of the original rectangular one. The rectangular matrix and the two square matrices are equivalent ways of representing the same relational data. In social network analysis the rectangular matrix is generally termed an ‘incidence’ matrix, while the square matrices are termed ‘adjacency’ matrices. These terms derive from graph theory, and they will be explained more fully in the next chapter. For the moment, it is sufficient merely to know the names, as they are the most generally used terms for relational data matrices. Most techniques of network analysis involve the direct manipulation of adjacency matrices, and so also involve a prior conversion of the original incidence matrix into its two constituent adjacency matrices. It is critically important, therefore, that researchers understand the form of their data (whether incidence or adjacency data) and what this implies for the analyses that can be undertaken.
Where a researcher collects two-mode data on cases and their affiliations, it will generally be most appropriate to organise this information into an incidence matrix from which the adjacency matrices used in network analysis can later be derived. In some situations, however, it will be possible for a researcher to collect relational data in a direct case-by-case form. This would be the situation with, for example, friendship choices made within a small group. In this situation of what is called direct sociometric choice data, the information can be immediately organised in an adjacency matrix. Without entering into all the complications, there is, in this situation, no corresponding incidence matrix and no complementary adjacency matrix of affiliations. The reason for this, of course, is that all the agents have merely a single affiliation in common: the fact of having chosen one another as friends.7
For many social network purposes, the distinction between cases and affiliations may appear somewhat artificial. In a study of, say, the involvement of 18 women in 14 social events, it would seem only sensible to regard the women as the cases and the events as their affiliations. Indeed, this would be in line with the normal survey practice of treating the agents as the cases. But with such phenomena as overlapping group memberships, for example, the situation is far less clear-cut. This kind of research is interested in the extent to which a group of organisations overlap in their membership, and in how similar they are in their patterns of recruitment. Both the groups and their members are agents in the sociological sense, and so both have an equal right to be considered as the ‘cases’. The members may be treated as the cases, in which case the organisations of which they are members will be treated as their affiliations; or the organisations may be treated as cases and the members that they share will be seen as their affiliations. The choice of which set of agents to treat as the cases for the purpose of network analysis will depend simply on which is seen as being the most significant in terms of the research design.
This decision will normally have been reflected in prior sampling decisions. If the organisations are assumed to be of the greatest importance, then a sample of organisations will be selected for study and the only people who will figure in the subsequent analysis will be those who happen to be members of these organisations. In such a research design, the organisations have a theoretical priority and it would seem sensible to treat the members as indicating affiliations between organisations. As far as the techniques of network analysis are concerned, however, it makes no difference which of the two are regarded as the cases. The same procedures may be applied whichever choice is made, and it is the task of the researcher to decide which of them may have a meaningful sociological interpretation.8


Matrix Conventions
The distinction between cases and affiliations, therefore, is generally to be regarded as a purely conventional feature of research designs for network analysis. Another aspect of this convention is to place the cases on the rows of the incidence matrix and the affiliations on its columns. This arrangement is based on the conventions employed in attribute analysis, where the cases are treated as rows and the variables are treated as columns.
Certain other conventions in the use of matrices must also be understood. These conventions can be recommended as the proper basis of best practice in network analysis, as they help to ensure maximum clarity in research discussions. Most readers will be familiar with the importance of various conventions in basic mathematics. It is conventional when drawing ordinary graphs of variables, for example, to use the vertical axis for the dependent variable and to label this as the y-axis. The horizontal axis is used for the independent variable and is labelled as the x-axis. This convention prevents any confusion about how the graph is to be read and it ensures that any statements made about the graph will be unambiguous. The conventions surrounding the relational data matrix have a similar purpose.
In the discussion of matrices, it is conventional to designate the number of rows in a matrix as m and the number of columns as n. It is also customary to list the rows first when describing its size. The overall size of a matrix can, therefore, be summarised by referring to it as an m × n matrix. Incidence matrix (i) of Figure 4.3, for example, is a 4 × 5 matrix. It is also conventional to refer to the rows before the columns when describing the contents of any particular cell, and to use the letter a to refer to the actual value contained in the cell. Thus, the value contained in the cell corresponding to the intersection of row 3 with column 2 would be designated as a(3, 2). This can be generalised by using the convention of referring to the individual rows by i and individual columns by j. Thus, the general form for the content of a cell is a(i, j), where the researcher may then go on to specify the relevant values for i and j. These conventions are summarised in Figure 4.4.
Figure 4.4 Matrix conventions: best practice
[image: Figure 12]

An Analysis of Directorship Data
The usefulness of the matrix approach to relational data can best be illustrated through a concrete example. Figure 4.5 contains some artificial data on interlocking directorships among companies. An interlocking directorship, or interlock, exists where a particular person sits as a director on the boards of two or more companies. His or her presence on the two boards establishes a relation between the companies. In many investigations of interlocking directorships, it is the companies that are of central interest. For this reason, they are generally treated as the cases and so are shown as the rows of incidence matrix (i) in Figure 4.5. The affiliations, shown in the columns of this matrix, are the directors that the companies have, or do not have, in common with one another. Each cell of the matrix contains a binary digit, ‘1’ or ‘0’, which indicates the presence or absence of each director on each company. Thus, company 1 has four directors (A, B, C and D), and director A sits on the board of company 2 as well as company 1. This means that there is an interlock between company 1 and company 2. The adjacency matrix – (ii) in Figure 4.5 – shows the interlocks that exist among all companies. In this matrix, each cell shows more than the mere presence or absence of an interlock, it shows the number of directors in common between a pair of companies. The cells contain actual values, rather than simply binary digits, because companies may have more than one director in common. Thus, company 1 and company 4 have just one director in common (director C), while companies 2 and 3 have two directors in common (directors B and C). This can be confirmed by examining the columns of the original incidence matrix, which show that director C sits on companies 1 and 4, and that directors B and C each sit on companies 2 and 3.
The simplest assumption to make about this adjacency matrix might be that the strength of a relation can be measured by the number of interlocks that it involves. The strongest relations, then, exist between companies 1 and 2 and between companies 1 and 3, each of these relations involving three directors. The weakest links would be those that involve just one director. The sociogram of companies indicates the structure of the matrix quite clearly, with the numbers attached to the lines indicating the strength or ‘value’ of the lines. This sociogram could equally well have been drawn in other ways: for example, with the thickness of the lines representing their value, or with the points connected by one, two, or three parallel lines. Each method would convey the same information about the structure of the matrix.
Figure 4.5 Matrices for interlocking directorships
[image: Figure 13]
It will be recalled that it is possible to derive two adjacency matrices from a single incidence matrix. In this example, it is possible to derive not only the company-by-company adjacency matrix but also a director-by-director adjacency matrix. This matrix and its associated sociogram of directors – (iii) in Figure 4.5 – show the relations among the directors that exist when they sit on the same company board. There is, for example, a strong relation between B and C, who meet one another on three separate corporate boards (the boards of companies 1, 2 and 3), and rather weaker, single-board relations between A and D, between A and E, and between B and E. The sociogram of directors also illustrates such sociometric ideas as that D and E are relatively more ‘peripheral’ to the network than are the other directors: they have fewer connections, their connections are generally weaker, and they are not connected to one another.


Direction and Value in Relational Data
Adjacency matrices (ii) and (iii) in Figure 4.5 also illustrate some further general considerations in social network analysis. First, it is important to note something about the diagonal cells running from the top left to the bottom right. In matrix analysis this particular diagonal is referred to simply as ‘the diagonal’, because the cells are different from all others in the matrix. In a square matrix the diagonal cells show the relation between any particular case and itself. In some situations this is a trivial relation that exists simply by definition, while in others it may be an important feature of the network. The cells on the diagonal of matrix (ii) of Figure 4.5, for example, refer to the relation of each company to itself. In this example, these data would not have any particular meaning. The fact that a company is connected to itself through all its directors is true but trivial, as our concern is with inter-company relations. For this reason, the diagonal cells contain no values and should be ignored in the analysis. Many technical procedures in network analysis require the researcher to specify whether diagonal values are to be included or excluded, if this is at all ambiguous. For this reason, researchers must always be aware of the status of the diagonals in their matrices and will need to understand how particular procedures handle the diagonal values.
Figure 4.5 also shows that the adjacency matrices are symmetric around their diagonals: the top half of each matrix is an identical, mirror image of its bottom half. The reason for this is that the data describe an ‘undirected’ network, a network in which the relation of company 1 to company 2, for example, is the same as the relation of company 2 to company 1. The existence of a relation between the two is considered independently of any question of whether the relation involves the exercise of power and influence in one direction but not in the other. For this reason, all the relational information in an adjacency matrix for an undirected network is contained in the bottom half of the matrix alone; the top half is, strictly speaking, redundant. Many analytical procedures in network analysis, therefore, require only the bottom half of the adjacency matrix and not the full matrix. For undirected networks, no information is lost in this method of analysis.
Undirected data are the simplest and easiest type of relational data to handle, and it is, perhaps, necessary to spend a little time in discussing some of the more complex types of data. One of the most important considerations in variable analysis is the level of measurement that is appropriate for a variable. This is the question of whether attribute data should be measured in nominal, ordinal, ratio, or interval terms. From this decision flow many other decisions about which particular analytical procedures can appropriately be used for the data. Similar measurement problems arise with relational data, according to whether the data are ‘directed’ and/or ‘numbered’. Figure 4.6 uses these two dimensions to classify the four main levels of measurement in relational data.
The simplest type of relational data (type 1) is that which is both undirected and binary. This is the form taken by the data in the incidence matrix of Figure 4.5. The adjacency matrices in that figure contain relational data of type 2: the relations are undirected but valued.9 I have already shown that the ‘valued’ data (type 2) in the adjacency matrices of Figure 4.5 are derived from the binary data of the original incidence matrix. Values typically indicate the strength of a relation rather than its mere presence. The signed data that were discussed in Chapter 2 in connection with theories of balance are relational data where a ‘+’ or ‘−’ is attached to each line. These relations can be regarded as intermediate between the binary and valued types. Such data show more than simply the presence or absence of a relation, as the presence is qualified by the addition of a positive or negative sign; but the nature of the relation is indicated simply by the polarity and not by an actual value. It is, of course, possible to combine a sign with a value and to code relational data as varying from, say, −9 to +9. In such a procedure, the value could not represent simply the number of common affiliations between cases, as they cannot have a negative number of affiliations in common. The values must, therefore, be some other measure of the strength or closeness of the relation. Such a procedure would, of course, rest upon a sociological argument that produced solid theoretical or empirical reasons for treating the data in this way.
Figure 4.6 Levels of measurement in relational data
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Valued data can always be converted into binary data, albeit with some loss of information, by using a cut-off value for ‘slicing’ or dichotomising the matrix. In a slicing procedure, the researcher chooses to consider only those relations with a value above a particular level as being significant. Values above this level are sliced off and used to construct a new matrix in which values at or below this level are replaced by ‘0’ entries and values above it are replaced by ‘1’ entries. This procedure of slicing the data matrix is a very important technique in network analysis, and will be discussed more fully in Chapter 6. Directed data can also take binary or valued forms, and similar slicing procedures can be applied to reduce valued and directed data (type 4) to binary and directed data (type 3). It is also possible to reduce directed data to undirected data, by the simple expedient of ignoring the direction. Thus, a researcher may decide that the important thing to consider is the mere presence or absence of a relation, and not its direction. In this case, then, it makes sense to ignore the directionality of the data. A further matrix convention may appropriately be mentioned at this point. In adjacency matrices that contain directed data, the usual convention is to present the direction of a relation as running ‘from’ a row element ‘to’ a column element. Thus, the entry in cell (3, 6) of a directed matrix would show the presence or strength of the relation directed from person 3 to person 6. The relation directed from person 6 to person 3 would be found in cell (6, 3). This convention is shown in Figure 4.4. It is for this reason that a directed matrix is asymmetric around its diagonal, and that, therefore, the whole matrix must be considered, and not simply its bottom half.
Complex types of relational data can always be reduced to simpler types and, in the last instance, any type of relational data may be treated as if it were undirected and binary (type 1). Techniques appropriate to this type of data, therefore, have the widest application of all the techniques of social network analysis. It is not, of course, possible to undertake the reverse operation, converting simple to complex data, unless additional information is available over and above that contained in the original data matrix.10
Researchers must always take great care over the nature of their relational data. They must, in particular, be sure that the level of measurement used is sociologically appropriate. The attempt to use valued data in studies of interlocks, for example, rests upon assumptions about the significance of multiple directorships that may or may not be appropriate. It might be assumed, for example, that the number of directors in common between two companies is an indicator of the strength or closeness of a relation. Having four directors in common, on this basis, would mean that two companies are ‘closer’ than those that have only two directors in common. But is this a valid sociological assumption? If it is not, the mathematical procedure should not be used. Mathematics itself cannot provide an answer for the researcher. The relevance of particular mathematical concepts and models is always a matter for the informed sociological judgement of the researcher. Even if it is decided that it is reasonable to use valued data, the researcher must be alive to other assumptions that might be contained in the mathematical procedures. Does a procedure, for example, treat the values as ordinal or as ratio variables? In the former case, a value of 4 would be regarded simply as being stronger than a value of 2; in the latter case the relationship would be regarded as being twice as strong. The choice of a level of measurement is, again, a sociological question and not a mathematical one.


Computer Programs for Social Network Analysis
There are now a variety of computer packages available for those who want to manipulate their matrices and calculate some social network measures. The most important programs, and the most easily available, are UCINET and Pajek, and I will be referring to the use of these programs at various points in the book.
UCINET was produced by a group of network analysts at the University of California, Irvine (UCI), and the current development team includes Stephen Borgatti, Martin Everett and Linton Freeman.11 The program began as a set of modules written in BASIC, progressed to an integrated DOS program, and has been available as a Windows program for a number of years. It is a general purpose, easy to use program that operates through a hierarchical menu structure to reach particular options and commands. This is shown in this book in the form MENU1 > MENU2 > COMMAND so as to indicate the sequence of menu choices needed for any particular measure. The program covers all the basic graph-theoretical concepts, positional analysis, and multi-dimensional scaling. UCINET Version 6 data files are in matrix format and consist of simple alpha-numeric files. The rows in a data file represent the rows in a basic network listing, but a header row contains details on the number of rows and columns and the labels that are used to identify them. The program contains in-built procedures for converting other data file formats. In addition to exporting in various formats, a number of conversion utilities are provided that allow UCINET to feed, almost seamlessly, into other social network analysis programs.
The easiest way to produce data files is by using the intuitive and built-in, spreadsheet-style, data entry system that is accessible from the DATA menu. This uses a linked list format that shows, for each unit (such as a person or an organisation), the code numbers of all the other units to which it is connected. As well as entering and editing data with the UCINET spreadsheet, it is possible to import (and export) data from Excel worksheets. The data file can be edited after the initial data entry, and various permutations and transformations can be performed on it so as to identify subsets for further analysis. For example, the rows and the columns can be permutated, sorted, or transposed, or the weightings of lines can be altered. This latter procedure is termed ‘dichotomising’ the matrix – accessed through the TRANSFORM menu – and makes it easy to prepare a series of data files for use in more complex analyses.
The principal social network analysis procedures are found under the NETWORK menu, where there are sub-menus for COHESION, CENTRALITY AND POWER, SUBGROUPS, ROLES & POSITIONS, and various more specialised procedures. COHESION gives access to basic calculations of distances and densities; CENTRALITY is the venue for all the various measures of closeness, betweenness and other measures of centrality and prominence. The SUBGROUPS menu gives access to a number of powerful techniques for the detection of cliques, while the REGION option detects the various zones and sectors within the network. Under ROLES & POSITIONS it is possible to run programs that analyse structural locations in a network. Finally, the TOOLS option is used to undertake multi-dimensional scaling, cluster analyses, factor analysis and correspondence analysis. All of these terms are explained in the course of this book. Display of network data can be handled through the separate NETDRAW program that is supplied with UCINET (but see below for an alternative).
The program called Pajek – the word is Slovenian for spider – was specifically devised to handle very large data sets, though it can also handle small ones. Produced by Vladimir Batagelj and Andrej Mrvar, it was released at the end of 1996 and has been periodically updated. Wooter de Nooy has taken the lead in producing a comprehensive manual for Pajek that includes numerous worked examples (de Nooy et al., 2005).12
The program displays its results and workings in a main window and various subsidiary windows. The options equivalent to DATA and TRANSFORM in UCINET are called FILES and NET in Pajek. The FILES menu has options to read, edit or sort data files – which are entered into data files as a list of points with their labels and a list of lines. These can be either the original matrices themselves or the results for partitioning or clustering the data. Using commands available from the NET menu, the networks can be transposed or reduced. This is also the place where the command to detect components can be found. A number of other menus allow a variety of partitioning and clustering options that are specifically designed to reduce the size of very large networks and make them more amenable to analysis. A large network can be analysed and partitioned, for example, and then the partitions can each be analysed separately and in greater detail.
Pajek concentrates on procedures that work efficiently on large data sets and does not contain the comprehensive array of network measures found in UCINET, but it does allow some powerful processing of large networks. For many users, however, the most interesting parts of the program will be the various options found under the DRAW menu. It is here that the user can gain access to procedures for the two-dimensional and three-dimensional drawing of network diagrams on screen, and the resulting diagrams can be coloured and labelled to bring out their central characteristics. Options are available to spin and rotate the diagrams for inspection from a variety of angles, and points can be moved easily by dragging them with the mouse. All aspects of these manipulations can be controlled in great detail. The diagrams created can be exported in a variety of graphical formats discussed later in this book. Pajek is also distributed along with UCINET, making it easy to move between one program and the other.
Numerous other programs exist and new programs are appearing all the time, often based around innovative – and sometimes unfamiliar – methods and measures.13 Perhaps the most important of these is SIENA, which allows the analysis of network change over time. It is well worth checking these out, so long as you are clear about what they are trying to do. Most can be discovered from the INSNA home page by following through its connections, and many new programs are announced through the SOCNET information service.14

Exercise
Download your preferred computer program and produce a data file for the data below. These data show the attendance of ten social workers at four national training sessions concerned with child welfare, professional ethics, record keeping and legal responsibilities. The attendance is as follows:






Using the program, print the incidence matrix and then generate and print the adjacency matrix of social workers.
Which social worker(s) attended the most courses?Which course was the most popular?Which social worker(s) met the most other social workers at courses?Which social worker(s) met the fewest other social workers at courses?Which social worker(s) met each other most frequently at the various courses?
You can probably, of course, discover many of these answers directly from the above list, but the point of the exercise is to familiarise yourself with using the program so that you can use it on larger and more complex data sets.
If you feel brave, see if you can use the drawing facilities of the program to produce a sociogram.
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Further Reading
Crossley, N., Bellotti, E., Edwards, G., Everett, M., Koskinen, J., and Tranmer, M. (2015) Social Network Analysis for Ego-Nets. London: Sage.Concerned with personal networks (which I introduce in Chapter 5), but also introduces the use of UCINET.De Nooy, W., Mrvar, A., and Batagelj, V. (2005) Exploratory Social Network Analysis with Pajek. New York: Cambridge University Press.A good manual for using Pajek, which also covers many key issues in social network analysis.
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