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Abstract
The temporal exponential random graph model (TERGM) and the stochastic actor-oriented model
(SAOM, e.g., SIENA) are popular models for longitudinal network analysis. We compare these models
theoretically, via simulation, and through a real-data example in order to assess their relative strengths
and weaknesses. Though we do not aim to make a general claim about either being superior to the other
across all specifications, we highlight several theoretical differences the analyst might consider and find
that with some specifications, the two models behave very similarly, while each model out-predicts the
other one the more the specific assumptions of the respective model are met.
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longitudinal networks; inferential network analysis; dynamic networks; statistical modeling

1. Introduction
When modeling longitudinally observed networks (e.g., panel network data), the analyst is
generally confronted with a choice between two popular candidate models: the temporal expo-
nential random graph model (TERGM) (Hanneke et al., 2010; Leifeld et al., 2018; Desmarais and
Cranmer, 2010, 2012c) and the stochastic actor-oriented model (SAOM) (Snijders, 2001; Snijders
et al., 2007, 2010), often known by the name of its software implementation SIENA. An unusual,
even surprising, feature of the literature on longitudinal network analysis is that authors tend to
use one or the other of these techniques without explicitly considering or refuting the alternative.
This is noteworthy as previous studies show that the two models often yield considerably differ-
ent parameter estimates based on nearly identical model specifications (Lerner et al., 2013). Even
though the two models accomplish the same inferential task in a somewhat similar way, it is rare
to see the theoretical fit or empirical performance of the two techniques directly compared (but
see Desmarais and Cranmer, 2012a; Block et al., 2018, 2019). When theory is invoked with respect
to model choice, it is usually done to justify the use of one of these network models relative to a
regression model.1 Yet, as we demonstrate below, it is usually not the case that theory alone is
strong enough to provide the analyst a clear preference for one or the other. So, what is one to do?

Our goals here are to (a) carefully discuss the differences between the TERGM and SAOM such
that the reader may be able to consider the interface between the two models and substantive the-
ory in any given application area. We also (b) use a simulation study to show that differences in
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the models’ assumptions and mechanics often result in significantly different substantive conclu-
sions, even when the same theoretical specification is tested on the same data. We simulate two
different types of known data-generating processes (DGPs) catering to the different assumptions
each model makes. The results show that a violation of these assumptions generally leads to a
larger discrepancy between actual and predicted edges and that the models are sensitive to misap-
plication due to their different temporal updating processes. Further (c), we seek to demonstrate
the utility of comparing the two competing models in application, as it is usually unclear a priori
which of the two models’ assumptions are met more exactly. To this end, we replicate a popular
SAOM specification with a TERGM and compare the out-of-sample predictive performance of
the models. The comparison illustrates that even in well-studied applications, the appropriateness
of the respective model-related assumptions can be hard to determine theoretically. Lastly (d), we
provide a framework and companion software for easily comparing the out-of-sample predictive
performance of the TERGM and SAOM. Thus, researchers whose theory does not provide suffi-
cient guidance to select a model, or researchers seeking to evaluate the robustness of their results,
need not rely on theory alone to judge which model fits best for a given application.

To date, four relevant comparisons exist in the literature. First, Lerner et al. (2013) compare
TERGMs and SAOMs, respectively, with versions of the models where the network statistics are
lagged and where no dependence is assumed within observed time steps (conditional indepen-
dence). Our comparison, in contrast, is between conditional-dependence versions of the TERGM
and the SAOM. Second, Desmarais and Cranmer (2012a) compare the SAOM and TERGM based
on a single empirical case study. Our comparison is more general as it employs Monte Carlo
simulations and an additional empirical case study in addition to a theoretical discussion. Third,
Block et al. (2018), in following an earlier version of the present article, engage in a theoretical,
empirical, and simulation-based out-of-sample comparison of the performance of the two mod-
els. However, their simulation-based comparison is limited to the role of inter-observation periods
for parameter interpretation while the comparison presented here focuses on explanatory perfor-
mance in general. Moreover, in their empirical comparison, Block et al. (2018) argue that temporal
networks are too complex for out-of-sample prediction at the dyadic level, while we show that
there are important differentials in predictive fit between the models depending on which model’s
assumptions are met more closely by the DGP. Fourth, Block et al. (2019) compare nontemporal
SAOMs and ERGMs theoretically by comparing the mechanics of network statistics. While they
argue that differences in models must stem from the different way statistics are defined, we discuss
additional differences between the models that impose assumptions which may or may not be met
by the respective process in the real world.

2. Theoretical comparison between the twomodels
2.1 Common roots of the SAOM and the TERGM
The inferential study of temporal dynamics in networks goes back to the 1970s and 1980s, with
pioneering work by Holland and Leinhardt (1977), Iacobucci andWasserman (1988), Wasserman
and Pattison (1996), Robins and Pattison (2001), Runger andWasserman (1980), andWasserman
and Iacobucci (1986, 1988). Both models we consider here were inspired by this literature.2

A natural starting point in comparing the TERGM and the SAOM is an account of their
many similarities, followed by a comparison of their differences. The mathematical hearts of the
TERGM and SAOM are very similar and are both related to the (nontemporal) exponential ran-
dom graph model (ERGM) (Wasserman and Pattison, 1996). The models differ only in their sets
of possible permutations, their treatment of temporal dynamics, and their estimation strategies
(discussed in the next two sections).

The (nontemporal) ERGM can be expressed by its probability density function

P(N, θ)= 1∑
N∗∈N exp

{
θ�h(N∗)

} exp
{
θ�h(N)

}
(1)
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22 P. Leifeld and S. J. Cranmer

where N is the observed network, θ are the parameters, h(N) is a vector of statistics computed on
the network, and N∗ refers to a particular permutation of the network from the set of all possible
permutations of the network holding the number of vertices as fixed N . Here, a permutation is
defined as another network topology with the same number of vertices but not necessarily the
same number of edges. Equation (1) yields the exponentiated sum of weighted network statistics
over the same sum for all networks that could have been observed in place of the network being
considered in the numerator. A wide variety of endogenous dependence can be incorporated into
the h(N) vector of statistics, including reciprocity, edge-wise shared partners, four-cycles, and
exogenous covariates, among many others (Morris et al., 2008). The TERGM and the SAOM are
both closely related to this definition, as will be explored below. For reviews of the ERGM, its
specification, and its estimation, see, for example, Goodreau et al. (2008), Cranmer et al. (2017),
and Lusher et al. (2013).

2.2 The temporal exponential random graphmodel
The TERGM builds on the ERGM by first defining the probability of a network at the current time
step t as a function of not just sums of subgraph counts of the current network, but also previous
networks up to some time step t −K:

P
(
Nt|Nt−K , . . . ,Nt−1, θ

) =
exp

(
θ�h

(
Nt ,Nt−1, . . . ,Nt−K))

c
(
θ ,Nt−K , . . . ,Nt−1

) (2)

This assumes that the statistics formed based on the networks between t −K and t fully encompass
the dependencies observed in the network at time t. The denominator contains the same kind of
normalizing constant as in the ERGM. In a second step, one computes the product over all time
periods in order to determine the probability of the time series of networks:

P
(
NK+1, . . . ,NT |N1, . . . ,NK , θ

) =
T∏

t=K+1
P
(
Nt|Nt−K , . . . ,Nt−1, θ

)
(3)

This is a simple extension of the ERGM to a series of networks. To incorporate temporal depen-
dencies between time steps, the network statistics defined in h can incorporate “memory terms.”
Leifeld et al. (2018) provide an extensive discussion on this topic. The key is to specify a temporal
statistic related endogenously to the structure of the network that captures the temporal process
at work. A very simple example would be the dyadic stability term,

hm =
∑
i�=j

Nt
ijN

t−1
ij + (

1−Nt
ij
)(
1−Nt−1

ij
)

(4)

which adds value to the hm statistic whenever the status of a dyad (tied or not) does not change
from one period to the next. Because the temporal processes of interest will vary from application
to application, it is fortunate that the analyst has a great degree of flexibility in the design of mem-
ory terms. The only real restriction is that they should be specified as sums of subgraph products.
As such, including terms to capture edge persistence, edge innovation, edge dissolution, delayed
reciprocity, delayed triadic or four-path closure, delayed two-paths, or arbitrary functions of time,
is possible (Hanneke et al., 2010; Leifeld et al., 2018).

It is important to note that these dependencies comprise both autoregressive specifications,
where the current network is modeled as a function of previous states of the network (such as
dyadic stability) and network statistics that describe the transition between consecutive network
states (such as delayed reciprocity or closure of transitive triads over two or three time steps),
where the latter class of statistics permits modeling network evolution as a temporal process.
In other words, the dependence graph (Frank & Strauss, 1986) of the TERGM, which formally
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defines the dependence of one dyad on another, can (but need not)model the dependence between
modeled variables at multiple different time points.

This makes the TERGM a flexible model because there are no restrictions on the dependencies
other than the length of the time series. The TERGMdoes notmake any assumptions as to whether
the time that passes between time steps is long or short, continuous or discrete, and whether edges
can be established sequentially or simultaneously in the DGP, as long as the outcome of this process
can be mapped into a dependency term that can be incorporated into the h vector. This makes it
very flexible because there are few restrictions on the h statistics. Conversely, it does not maintain
a very close connection to the DGP at the micro-level, as will be discussed below.

Estimated parameters can be interpreted as the log-odds of establishing a tie (at any point)
given the rest of the network and up to K previous networks. Estimation is possible using Markov
chain Monte Carlo maximum-likelihood estimation (MCMC-MLE) (Hanneke et al., 2010; Leifeld
et al., 2018) or maximum pseudolikelihood estimation with a bootstrap correction to the confi-
dence intervals (Desmarais and Cranmer, 2010, 2012c), as implemented in the btergm package
(Leifeld et al., 2017, 2018) for the statistical computing environment R (R Core Team, 2016). For
a more detailed methodological treatment of the TERGM, see Hanneke et al. (2010), Leifeld et al.
(2018), Cranmer and Desmarais (2011), Desmarais and Cranmer (2012c), and Cranmer et al.
(2012, 2014).

2.3 The stochastic actor-orientedmodel
To build an SAOM (Snijders, 2001), one takes the initial observed network as given and models
changes to it using a variant of Equation (1) and a simulation process meant to mimic the evolu-
tion of the network between discretely observed time periods. The SAOM is a stochastic process
in continuous time and can be characterized as a generative model that describes the network
dynamics over time. While the TERGM is primarily a joint model of network states at multi-
ple time points and is usually parameterized in a way that builds dynamics across time points
into the model as an explanatory factor, the SAOM models the changes that take place between
time points, rather than the outcomes of these processes as in the TERGM. This, coupled with
its explicit micro-level orientation, makes the SAOM a theoretically appealing choice for model
building on network dynamics.

Ultimately, both techniques try to model a series of consecutive networks using endogenous
network statistics and a set of covariates. In fact, the TERGM and SAOM include endogenous
dependencies and exogenous covariates as subgraph products in the h(N) term, in an almost iden-
tical fashion. Thus, the TERGM and SAOM can be characterized as very similar models. As will
be made clear presently, the major difference between them stems from the ground assumptions
of the models and the resultant differences in updating processes employed by the two models, as
well as the support of their probability distributions.

The SAOM follows Holland and Leinhardt (1977) in positing that network change is a first-
order Markov process, meaning that the network at time t is exclusively a function of the network
at t − 1, a vector of endogenous statistics (h, which can be nearly identical to the h vector in the
TERGM), and a corresponding set of parameters θ that determine the evolution of the network
between t − 1 and t. The SAOM posits that the time between t − 1 and t can be broken down into
a possibly infinite number of consecutive time steps—so-called mini-steps—during which vertices
(often interpreted as actors) re-allocate their edges. At each of these mini-steps, two functions are
executed: the rate-of-change function and the objective function.

At each mini-step, the rate-of-change function first selects an actor that may change its tie struc-
ture. The rate of change depends on the network and individual characteristics. By default in the
software and most commonly in the literature, the rate is specified as follows:

∀i: λi(Nt)= ρt (5)
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24 P. Leifeld and S. J. Cranmer

This rate, or waiting time, is a random Poisson process that assigns an equal probability of being
selected to each vertex at a givenmini-step. That is, each vertex has the same expected waiting time
before it is selected (again). The rate function can be specified in more elaborate ways such that
vertices are activated with individual waiting times corresponding to functions of vertex covari-
ates. When using a weighted rate-of-change function, characteristics affect the rate-of-change
function multiplicatively through an exponential link function (Snijders et al., 2010). This choice
should be driven by theory; the simplest option is an equal probability with waiting times scaled
to match the amount of change between the observed networks at t − 1 and t (Snijders, 2001).
Details on the rate-of-change function can be found in Snijders (2001, 2005), Amati (2011), and
Snijders and van Duijn (1997).

Given that an actor has been selected at a mini-step, the objective function is executed. The
actor selected may add a new edge to another vertex, remove an existing edge, or leave its edge
profile as it is. The choice of which outgoing dyad k to consider (from the perspective of vertex i)
is guided by the function

fi(θ ,N)=
∑
k

θkhik(N) (6)

This function accommodates the same h statistics as the ERGM, except that SAOM statistics
are computed from an egocentric perspective. For example, while the (T)ERGM would include
reciprocity as the count over all ij dyads,

hreciprocity_ergm =
∑
i�=j

NijNji, (7)

the SAOM would include reciprocity from the perspective of vertex i,

hreciprocity_saom(i)=
∑
j

NijNji. (8)

Apart from this difference in the formulation of statistics, any network statistic that can be
included in the ERGM can also be included in the SAOM.

The decision of which dyad to change, as given in Equation (6), is made simultaneously with
the decision on how to change the respective dyad. Intuitively, given that the objective function
concerns an n-category unordered choice (consisting of the three types of actions: add or remove
an edge; do nothing), the probability of a specific choice is computed in an identical fashion to
that of a multinomial logistic regression:

Pr(Nij)= exp
(
fi(θ ,N)

)
∑

N∗∈N exp
(
fi(θ ,N∗)

) (9)

Put more simply, “the probability that an actor makes a specific change is proportional to the
exponential transformation of the objective function of the new network, that would be obtained
as the consequence of making this change” (Snijders et al., 2010, p. 58). This may look identical
to the probability definition of the ERGM in Equation (1), but there are two notable differences:
N contains only the network states that are under direct influence of vertex i through the objective
function (as opposed to all permutations in the ERGM), and the dependency terms hki(N) in
fi(θ ,N) are formulated from the perspective of i (see Equations (7) and (8)).

Estimated parameters in the SAOM denote contributions to the objective function, and log-
odds ratios can be retrieved by comparing the objective function for different outcomes (establish
a tie, remove a tie, or do nothing) (Snijders, 2005; Snijders et al., 2010). The SAOM can be esti-
mated using the (generalized) method of moments by means of a (modified) Robbins–Monro
stochastic approximation algorithm (Snijders, 2001; Amati, 2011) or MLE (Snijders, 2017). The
model was implemented in the R package RSiena (Ripley et al., 2017a,b).
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As this discussion has shown, the SAOM and TERGM are similar in many respects related
to their core equations and specifications. Under a specific and rarely applied rate function,
the SAOM even has an ERGM as its limiting distribution (Snijders, 2001). A comparison of
Equations (2) and (9) with Equation (1) shows how both have strikingly similar mathematical
cores with a nearly identical way of specifying sufficient network statistics.

2.4 Differences between the TERGM and the SAOM
The similarity between these models may lead to some confusion as to which model is prefer-
able for a given application. In line with the “no-free-lunch theorem” (Boulesteix et al., 2013), we
believe that one cannot make a general claim about one of these models being generally superior
to the other across contexts, but that the question of which model to choose must be addressed
with respect to the specific application. Consequently, we review the assumptions of each model
before considering the effects that these differences have on model performance.

Before we do so, however, we note that the SAOM and the TERGM each have their own
recent or ongoing extensions, which may offer advantages over each other in specific contexts.
The SAOM, for example, is able to estimate multiple interdependent network processes in a single
model (Snijders et al., 2013). There are variants for “multiplex,” “multi-relational,” or “multi-level”
ERGMs as well (Wang et al., 2013), but they have not yet been extended to the temporal case.
The ERGM has also seen the development of variants for weighted (valued) edges (e.g., the
Generalized ERGM, see Desmarais & Cranmer, 2012b), and extensions to the temporal case
should be straightforward. Here, we focus on the simplest case: a comparison between the SAOM
and the TERGM for a single, binary network over multiple time periods as described by Hanneke
et al. (2010), Leifeld et al. (2018), and Desmarais and Cranmer (2010, 2012c) and implemented in
Leifeld et al. (2017) for the TERGM and as described in Snijders (2001) and Snijders et al. (2007,
2010) and implemented in Ripley et al. (2017b) for the SAOM. We consider these the canonical
forms of the two models and limit our discussion to them. Contrasting the various extensions of
these models is left to future research.

2.4.1 Primacy of actors andmicro-level modeling
One may be tempted, based on the difference in names, to think that the major theoretical differ-
ence between the SAOMand TERGM relates to the primacy of actors (the vertices of the network).
In fact, the major difference lies not so much in the primacy of actors, but more in the timing and
updating processes assumed in the two models. However, it is natural to begin by clarifying the
extent to which the two models place primacy on the actors.

The TERGM, in its basic formulation, is a model of the edges in a network. These edges are
modeled as a function of the topology of the network itself, exogenous relational covariates, and
exogenous vertex (actor) attributes, either concurrently or as a function of past states of the net-
work (see Equation (2)). As a consequence, the TERGM assumes little in the way of actor agency;
the TERGM is consistent with more detailed models that provide for high degrees of agency from
the actors, but it is also consistent with models that assume no agency at all. In other words, the
TERGM has little to say by virtue of its basic mathematics about the primacy of actors or their
agency, but it can be adjusted, through the dependence statistics and covariates included in its
specification, to model the structure of the network as a function of actor-centric processes.

For example, conflicts in the international system can be modeled by describing structural
effects like two-stars (an edge- or subgraph-level interpretation), but these counts of subgraph
products can be interpreted from an individual actor perspective. For instance, one could posit
that one state attacks another state because that state has been attacked by a third party before
(preferential attachment), thus leading to a topology where two-stars are prevalent. The TERGM
is therefore compatible with actor-based theories, but it does not assume per se that actors make
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26 P. Leifeld and S. J. Cranmer

these decisions. For instance, one could also apply a TERGM to the changing topology of electrical
power networks and model endogenous features like two-paths without invoking theory related
to the primacy of actors.

The SAOM is explicitly actor-centric; thus, its namesake as an “actor-oriented” model, in the
sense that one might regard the determination of outgoing edges as part of the behavior of the
actor. The SAOM includes two processes, related to the timing and nature of edge changes, that are
built specifically around the agency assumed of the actors (Snijders et al., 2010) (see Equations (5)
and (9)). Logically, these stochastic processes assume the agency of the actor: that the actor has
the ability and motivation to change their edges. We will discuss these two processes again below,
as they relate more to timing and edge updating than actors. What is important to make clear
here is that the SAOM is not actor-oriented in the sense that the outcome of interest is an actor-
level variable. Rather, similar to the TERGM, edges and the network topology resulting from these
edges are the outcomes of interest. The SAOM is a model of the changes in relationships between
actors (thus, a model of the network and not a model of the actors) that is conditioned by specific
assumptions about how actors behave.3 The TERGM is a model of the status (e.g., connected or
not) of relationships between actors (Block et al., 2018) that may be adjusted to address changes
in relationships.

It is also important to note that both models can contain identical sets of model terms in their
respective h vectors. It may feelmore intuitive to use the SAOM if one tests a theory that is based
on methodological individualism. Yet, both models permit identical theoretical processes to be
modeled, and any differences in theory are either related merely to a subjective interpretation one
attaches to the equations, or they are related to themini-step updating process of the SAOM that is
absent in the TERGM (Block et al., 2019). Therefore the remaining comparison of the two models
will focus on the mini-step updating process inherent in the SAOM and absent in the TERGM.

2.4.2 Temporal updating process, sequentiality, andmultiparty events
For both the TERGM and SAOM, the network of interest is observed at several distinct, discrete
time points, but one does not observe what happened in the network between observations. For
example, assume a friendship network is sampled from a school on the last day of the school-
year for 4 years. We observe four discrete networks, but do not know how the network changed
between points in time. Some friendship edges observed at time t may have dissolved by time
t + 1, and others may have dissolved and re-formed during this time. Depending on how often
network edges change and how often the network is observed—properties that will vary greatly
from application to application—quite a bit of change may go unobserved between network snap-
shots. Often, one models networks at distinct time points because this is more convenient or
cost-efficient than observing data on a continuous basis. In these cases, the network at time t usu-
ally depends increasingly on the network at t − 1 the shorter the time span between the observed
time points.

The SAOM deals with this variability in temporal dependence by determining the required
number of mini-steps as a function of the amount of change between the two consecutively
observed networks (Amati, 2011, p. 147). That is, the simulations stop when as many edges have
been changed as between the observed networks (with unconditional estimation) or after a pre-
defined number of mini-steps reflecting the amount of change between the first and the second
network (with conditional estimation) (Snijders, 2001).

The TERGM, in contrast, is not built around the idea of modeling plausible paths between
the observed time steps. It rather models only the data that are observed. In its simplest version,
the TERGM is merely a pooled ERGM without any temporal dependence, thus assuming inde-
pendence between consecutive networks. In most temporal settings, independence between time
steps is unrealistic, therefore the user needs to think about how the previous network influences
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the current network. Instead of modeling this transition using mini-steps as in the SAOM, how-
ever, the outcome of this transition is mapped into the vector of user-supplied network statistics
when the TERGM is used.

For example, suppose that preferential attachment shall be tested. In an SAOM, one would test
for two-stars or indegree popularity over the (unobserved) sequence of mini-steps to establish
whether preferential attachment is a plausible mechanism given the two observed time points. In
a TERGM, one would test either for two-stars within the second time step or for two-stars over
time (i.e., where the first edge is observed at the first and the second edge is observed at the second
time step). Only in the second variant would the TERGM assume that the second edge occurred
after the first edge of the respective two-star. In the first variant, simultaneous formation of both
edges is equally plausible as a temporal order of the two edges.

One may be tempted to argue, based on this comparison, that the SAOM is better able to
operationalize the concept of preferential attachment here because it posits a more fine-grained
temporal updating process. Yet, this requires that the mini-steps accurately reflect the true tem-
poral development on average, which will be tested below. Another way of putting it is that the
SAOM creates artificial data to test a micro-level theory, but at the end of the day these artificial
data can only encode information that is actually observed in the two observed time steps; there-
fore, it cannot completely rule out that the edges are actually formed simultaneously or in reverse
order (i.e., in a way that is accounted for in the seemingly less specific TERGM).

This prompts an interesting philosophical question on the temporal order of social processes.
One may argue that true simultaneity never occurs in physical systems and consequently does not
occur in social systems either. Yet, a distinction needs to be made between absolute time andmea-
surable time from the point of view of the entities that cause edge formation. For instance, in an
e-mail communication network, sending an e-mail to two recipients on a single press of a button
occurs at two consecutive time points because the server does not process the two recipients truly
simultaneously. But from a theory perspective, this fine-grained temporal order does not matter
because the sender does not make two separate decisions, but rather one joint decision to send
out two e-mails, and the two e-mails are visible to the recipients (and possibly others) with such a
small time interval between them that they are given the chance to respond to these e-mails as if
they had arrived simultaneously.

An area of application in which simultaneity as perceived by actors matters is collective action
theory. While true simultaneity is rarely achieved, theory assumes that groups collectively engage
in nonaction until the incentive structures are changed such that all actors have an incentive to
become active at once. In network terms, it matters from a theoretical perspective whether the
dissolution of an edge instantaneously creates an incentive for a group of actors to form edges
or whether the dissolution of an edge leads to a single new edge somewhere in the network, that
edge creates an incentive for somebody else to create another edge, and so on in a Markovian
updating process. The SAOM assumes such a sequentiality in the temporal updating process while
the TERGM remains agnostic as to whether edges were formed in a sequence or simultaneously
as long as the statistics are found in the outcome network.

As a consequence, one can expect theories that posit simultaneity of multiparty events—such
as theories building on collective action—to be more compatible with the TERGM while theories
positing sequential edge updating should be equally compatible with both models. This should
lead to different parameter estimates in the former but not in the latter case. The difference is not
due to the sequentiality of the SAOM edge updating process per se, but rather due to the fact that
the rate-of-change function may impose quite a long waiting time between edge events that are
supposed to be simultaneous, thereby changing the network to some extent between supposedly
simultaneous moves.

As a case in point, consider the network of international defensive alliances between, say, 1946
and 2000 with annually observed time slices, where NATO was formed in a single, coordinated
treaty in 1949. Had opponents of NATO been allowed to react between the individual formation
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steps of the prospective NATO members (as would be possible in the SAOM), this may have
deterred the founding states from completing the formation of NATO. The SAOM inevitably takes
account of interactions between states because of the mini-steps. In the TERGM, such sequential-
ity can be avoided by incorporating nontemporal statistics for triadic closure within any given
annual network, such as within 1949. In short, we expect the mini-step sequences of the SAOM to
depart from the true DGP in applications that are based on collective action situations and other
simultaneous edge formation or dissolution behavior. In other applications—perhaps friendship
networks—sequentiality may or may not be a plausible assumption.

It is important to acknowledge that the expected difference is merely due to the temporal
updating process assumed by the SAOM (and not assumed by the TERGM), not due to any user-
supplied statistics, which can be identical. On the other hand, however, because the assumptions
made by the TERGM are less specific, the analyst may face an increased burden in the specifica-
tion of the model because she may need to add sufficient structure to the TERGM for it to match
her hypothesized DGP.

2.4.3 Conditionality on previous time points and goodness of fit
There are two principal ways in which the SAOMandTERGMdiffer with respect to changes in the
configuration of the network between observed time points. The first is simplest. The SAOM takes
the first network to be given (notmodeled) and thenmodels changes from that base network going
forward (Lusher et al., 2013). It is natively amodel of changes in networks. The TERGM, which can
be said to follow the core ERGMmore closely, is a model of the network itself, rather than changes
to it. The TERGM conditions on at least one previous network but natively models the structure of
the network over time, rather than changes to it. That said, the TERGM can be adjusted to closely
mimic the SAOM in the modeling of changes by including a “memory” term, which indicates
whether a given edge existed in the previous time period (for an extended discussion of memory
terms, see Leifeld et al. 2018). In the TERGM, one can control for the effect of the previous network
on the current network and then proceed by interpreting the parameters of the remaining statistics
as network effects conditional on the previous state of the network.4 The SAOM conditions on
the previous network by letting the mini-step process depart from the previous network. While
the amount of network change in the TERGM is visible in the parameter of the model term that
conditions on the previous network, the amount of change in the SAOM is visible in the rate
parameter(s).

Some may see the inclusion of such a memory term as advantageous because it makes the
autoregressive process more transparent, whereas this process is obscured somewhat by the
SAOM’s updating procedure. Others may find the continuous-time structure of the SAOM advan-
tageous for modeling a process that unfolds in continuous time (or nearly so) and is observed
“as snapshots” at some moments, especially considering that the population parameters of the
TERGM are sensitive to the interval of observation (Block et al., 2018). Ultimately, these are
merely differences in the interpretation of the parameters. If the TERGM employs a memory
term for conditioning on the previous network in lieu of the rate parameter of the SAOM, these
differences in interpretation should not affect the fit of the remaining parameters in a given model
if the same h statistics are used to construct the model.

The two models also differ with respect to the role of observation frequencies or inter-
observation times. Because the SAOM provides a DGP as part of the model, whereas the TERGM
simply conditions on a previous network or networks, the parameter values of the SAOM that are
not related to the rate-of-change function do not depend on the observation times or observa-
tion frequencies. TERGM parameters for model terms that posit dependence between time steps
depend on the inter-observation times, potentially strongly. For example, consider a time series of
yearly observations for 20 years. Modeling the series at yearly intervals with the TERGM will give
different results for the temporal dependency terms than modeling the series at intervals of 2 or
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5 years because the population parameters are different, not just because there are fewer data and
because of random variability (which would also affect results). For the SAOM, the population
parameters are invariant, given the rate parameter. As such, changing the period of observation
for an SAOM would only affect the parameters through sparser data and random noise.

While independence of the time range between two observation points may be seen as an
advantage in the interpretation of effects in the SAOM (Block et al., 2018), the flipside of this
argument is that the role of the previous network(s) can be interpreted in a more transparent
way in the TERGM precisely because the temporal dependency statistics (e.g., delayed reciprocity
or memory terms) reflect the degree of dependence on previous time points in the parameter
estimates.

For example, in a sequence of consecutive snapshots of the network of bilateral treaties between
countries, there is usually little annual change. The TERGM makes this fact transparent by cap-
turing this temporal dependence in a memory term (and possibly additional temporal statistics
like temporal triadic closure). The remaining statistics do not conflate the previous state of the
network with the respective statistic (e.g., triadic closure).

The difference between the two models has implications for goodness of fit: If the inter-
observation times are very small, there is little change between networks, and the temporal
statistics in the TERGM may indicate an artificially good model fit. However, it may be in the
interest of the analyst to quantify the dependence on previous network states as part of the DGP,
and hence the dependence on previous network states should be reflected in the quality of the
model, depending on one’s goal. In the TERGM, thesemodel terms give an accurate representation
of the degree of dependence on the previous time point(s) while the importance of the previous
time point in the SAOM can only be evaluated by interpreting the rate parameters. As the role
of the previous network for the current network is not entirely clear from the SAOM estimates,
there is a risk of misattributing variation in the network to h statistics that would be more easily
explained by path dependency. Therefore, one may argue that the TERGM does not artificially
inflate model fit, but rightfully attributes importance to the role of the previous network(s) rather
than the updating process.

2.4.4 Longer-term temporal dependence
The TERGM assumes that temporal dependence occurs up to K time steps in the past, and
it requires the user to specify these dependencies. For example, it may be realistic that wars
5–10 years ago impact wars in the current year, in addition to the wars just in the previous year.
Depending on the application, the need to specify the dynamic process for the TERGMmay raise
the burden of specification on the analyst.

The SAOM assumes that dependence on events before t − 1 is completely factored into the
previously observed network (t − 1). That is, it assumes a first-order Markov process. This places
a lighter burden on the modeler with regard to model specification, but there may be cases where
events that happened multiple time steps ago may not be captured by controlling for events at the
previous time step.

As Desmarais and Cranmer (2012a) note, these different specifications result in subtly but
importantly different distributions assumed by the two models: TERGMs take the first k net-
works to be given and do not model them, thus the networks that are modeled (those occurring
after k periods) are assumed to be in their stationary distribution conditional on the first k. The
SAOM takes the first network as given, and models changes thereafter, thus following a stationary
stochastic change process rather than a stationary stochastic series of graphs.

To make the contrast in basic assumptions clearer, consider some specific conditions for the
two models. For the SAOM, the usual procedure for generating a sample is the updating pro-
cess described in Section 2.3, whereas for the TERGM samples are usually generated through
the indefinitely continued edge-wise updating of a Gibbs sampler. For the SAOM, sufficient
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conditions are its stochastic updating process (the usual procedure for generating a sample), and
(more restrictive) myopic stochastic optimization by actors. For the TERGM, sufficient condi-
tions are indefinitely continued edge-wise updating according to Gibbs sampling by edge variables
(the usual procedure for generating a sample), and indefinitely continued myopic stochastic
optimization by edge variables.

2.4.5 Actor homogeneity, strategic behavior, and size limitations
Both models assume that there is a homogeneous process operating on the network. More specif-
ically, the SAOM posits that all actors have the same objective function and thus exhibit the same
social behavior (on average): they wish to maximize their values of the network statistics included
on the right-hand side of the specification. The TERGMmakes a similar assumption by positing a
single joint DGP over all dyads in the network. The differences only affect the interpretation, but
not the underlying mathematics: while both models assume homogeneity of the process over the
whole network, this homogeneity does not necessarily have to be interpreted as actor homogeneity
in the TERGM.

In the TERGM, the user models counts of subgraph products. As pointed out in the subsection
on temporal updating above, the TERGM is compatible with an actor perspective, but this per-
spective needs to be operationalized into countable edge-based network statistics (see also Butts
2017 for a similar argument on REMs). Therefore, rather than assuming that all actors have the
same goals as in the SAOM, the TERGMassumes that the distribution of subgraph counts captures
potential heterogeneity between vertices, thereby deviating from an actor-oriented perspective
when necessary.

However, the SAOM can accomplish exactly the same task because one can specify identical
subgraph products (read: h statistics) in both models. For example, if one models the number of
edge-wise shared partners per dyad in a TERGM, the distribution of edge-wise shared partners
per dyad reflects heterogeneity among actors or dyads, but on average each dyad has the same
probability to be located at a certain point in this distribution, which is captured by the estimate
for the respective statistic. Similarly, the SAOM estimate posits the same tendency of actors to
engage in edge-related behavior leading to the same outcome distribution of the statistic, and this
distribution captures heterogeneity in the network in the same way as in the TERGM.

That said, in bothmodels it is possible to model actor heterogeneity explicitly by adding vertex-
level covariates (e.g., actor type) and interacting them with other elements of the θ(N) vector. In
this case, however, one defines exogenously where the heterogeneity is located in the graph.

The actor homogeneity assumption built into the SAOM has two consequences. First, the
SAOM and the TERGM differ subtly with regard to their applicability to rational-choice theo-
ries. Many theories in the social sciences assume rational or otherwise forward-looking actors
(e.g., game-theoretical models). In the SAOM, when actors evaluate their objective function at
a given mini-step, they cannot “look down the game tree.” That is, the SAOM assumes that
actors compare the network with singly permuted (one-edge changed) networks, not the long-
run change that will result from immediate changes. As such, the updating process posited by the
SAOM is theoretically incompatible withmost rational-choice theories. Future researchmay try to
tackle this problem by proposing SAOM variants that use a multinomial choice model with alter-
natives being evaluated by backward induction of user-specified games in lieu of Equation (9).
Right now, the mini-step simulation process is likely led astray in many empirical applications
because actors do not evaluate the responses of other actors to their actions. This may lead to
omitted variable bias by design in situations where strategic actions matter.

The TERGM does not have provisions for strategic behavior built into the model either and
thus potentially suffers from the same problem. Yet it is unclear whether the problem is equally
severe in both models since the TERGM does not have a mini-step updating process, but rather
models the probability of observing a specific network configuration. A potential solution may
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be to compute the equilibrium of the game one wants to model and including it as a network
statistic. This of course suggests that one does notmodel the strategic interaction at themicro-level
(i.e., every interaction in the game), but rather tests whether the outcome of this local process is
present on average.

Neither of the two models has provisions for these kinds of extensions at this point, but they
may be easier to implement in the TERGM from a user perspective because only the h(N) vector
needs to be adjusted, not the temporal updating process built into the statistical model. In princi-
ple, the same equilibrium statistics could be included in the SAOM, but the interpretation would
differ: theoretically, this would mean positing that actors homogeneously work together towards
achieving the equilibrium, even though the equilibrium may actually be the result of a noncoop-
erative process that crucially rests on the assumption of heterogeneity of preferences. Therefore,
while both models may or may not be able to arrive at the same estimates in game-theoretic situa-
tions, the usual actor-level interpretation of the SAOMmay be confusing when applied to strategic
situations while the TERGM does not have to be interpreted from a micro-level actor perspective.
It is also unknown to what extent forward-looking behavior is prevalent in social networks, and it
may vary considerably by subject area.

Finally, the homogeneity assumption may have consequences for the size of networks that can
be modeled with each technique. The updating process of the SAOM assumes that all actors, when
they have a chance to update their edge profile, observe the entire topology of the network in
order to make their updating decisions. While this is reasonable in very small groups, it is hard
to imagine that actors can know the entire topology of even medium-sized networks. Given that
there are 2

(n
2
)
possible directed connections in a network, where n is the number of vertices, one is

tempted to think that the assumption of actors knowing the network topography is only valid for
very small networks. Indeed, if there are only 150 actors in a network (e.g., a very small school),
that implies 11,175 edges (or lack thereof) that an actor would have to be aware of and properly
account for in order to use the objective function to update his/her edge profile.

While neither model is computationally capable of estimating models on very large networks,
both can estimate models with thousands of vertices. However, the reasonableness of the SAOM
assumption seems to hold only for small networks, thereby imposing an unspecified size limita-
tion by theory. Users can estimate an SAOM even if this theoretical assumption is not met, but
it is yet unclear if this leads to biased estimates because the Markov simulations are based on
an unrealistic process. In the TERGM, in contrast, there is no theory that specifies such a size
limitation. For example, if the user specifies a preferential attachment mechanism by including
temporally delayed two-stars, this statistic is counted across the whole network without assuming
that actors consider all other actors’ edges and non-edges. That is, the TERGM cannot depart from
a theoretically specified Markovian updating process because it is agnostic as to whether such a
process caused the transition from t − 1 to t. In the SAOM, the specification of such a model term
assumes that actors make a choice over all other actors and their inter-connections in the network
and thereby rely on perfect information.

What happens if the SAOM is applied to an empirical case where individuals cannot observe
all other actors’ relations? Future research will need to evaluate whether a violation of these theo-
retical assumptions in the respective models leads to biased estimates or whether these are merely
differences in interpretation. While we cannot offer a comprehensive and nuanced comparison
that takes into account all the differences pointed out in this review, we seek to illustrate the need
for more focused comparisons below by contrasting two extreme cases that are maximally com-
patible with the respective assumptions of the SAOM and the TERGM and by demonstrating that
the plausibility of a model’s theoretical assumptions is consequential for its performance.

2.4.6 Behavioral component and estimation
One of the great innovations of the SAOM, and an often-cited reason for using it (Veenstra
et al., 2013), is that it includes the option to model a dynamic behavior (vertex attribute)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2018.26
Downloaded from https://www.cambridge.org/core. University of Glasgow Library, on 19 Feb 2021 at 20:54:11, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2018.26
https://www.cambridge.org/core


32 P. Leifeld and S. J. Cranmer

“simultaneously” with the evolution of the network. Desmarais and Cranmer (2012a) showed
that the TERGM can also incorporate a behavioral component, though the dynamics of the two
work somewhat differently. Both behavioral components are statistical models for the vertex
attribute at time t that include, on their right-hand sides, other vertex attributes and vertex-level
measurements on the network (e.g., the centrality of the vertex).

Where the two behavioral components differ is that the SAOM iteratively estimates the behav-
ioral model for each of the simulations between time periods conditioning the behavioral model
on the most recent simulation values available. The TERGM simply employs a (generalized) linear
regression and conditions on the previous time point. It is also the case that, if actor behavior is
being modeled as part of the network-generating process as in the SAOM, simulated intermediate
vertex behavior will also be accounted for in the network-generating model (Steglich et al., 2010).
Though the iterative simulations can imply a more immediate effect of previously observed net-
works on behavior, these models do not incorporate any simultaneous dependence between the
network and behavior.

Thus, it is fair to characterize the behavioral component of the SAOM as more dynamic than
that included in the TERGM. However, it is also unclear a priori which formulation will per-
form better in explaining and predicting vertex attributes. Whether or not a behavioral model that
incorporates simulated intermediary steps rather than simply conditioning on observed behavior
is more realistic will be entirely dependent on the accuracy of the simulation process. If the edge-
updating process described above is out of step with the DGP, the more dynamic process may
actually perform worse than the simpler behavioral model.

We leave the comparison and evaluation of model components for vertex attributes to future
research and focus on the network aspects of the two models. Both models have these capabilities,
but like the network parts, they differ substantially in their assumed updating processes.

Moreover, as outlined above, the two models have different estimation strategies and each may
be estimated in several different ways—the SAOM is typically estimated via (generalized) method
of moments but can also be estimated with maximum-likelihood approaches, and the TERGM
is usually estimated by MCMC-MLE for smaller networks and by bootstrap-corrected maximum
pseudolikelihood for larger networks. Though each of the estimation procedures is different and
may require care to different things (e.g., goodmixing and convergence withMarkov chains), they
should all provide valid estimates of any given model. That is to say, any valid estimation strategy
must produce unbiased and consistent estimates. Any estimation strategy that is not unbiased and
consistent is not statistically sound and should not be used as it will not produce valid results. We
see the topic of estimation as somewhat beside the point of the present analysis: unless any of the
approaches are outright wrong—and each has a substantial literature behind it—then it should not
matter which particular strategy is used. Put another way, if we are willing to assume the validity
of each of these estimation strategies, any differences in fit and performance between a TERGM
and an SAOM with comparable specifications will be the result of the model structure.

The TERGM and SAOM do, however, share a common limitation with respect to estimation:
estimation of both models is computationally intensive and time-consuming. As a result, both
models tend not to be estimable in short time periods (weeks/months) for very large networks. As
increases in computational power meet efficiencies in coding and advances in parallelization, this
restriction is weakening over time. However, as of this writing, neither model is easy to estimate
as the number of vertices and temporal observations increase.

3. Simulation-based comparison
3.1 Theoretical expectations
The previous section considered a number of differences in the theoretical assumptions of the
TERGM and the SAOM, despite the many similarities of the two models. It is yet unclear in how
far these theoretical differences also translate into a difference between estimated parameters and
the parameters of the true DGP when the theoretical assumptions are not met by the data.
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Here, we select two critical cases for comparison, one with a DGP that is maximally compatible
with the SAOM and one that is maximally compatible with the TERGM.5 Our expectation from
the theoretical comparison is that the performance of the respective model is better when the
underlying DGP of the simulation is compatible with the assumptions of the respective model.

If an SAOM DGP (i.e., a rate and an objective function) is used to simulate a sequence of net-
works, the SAOM should show the same or potentially a better fit than the TERGM. If a TERGM
DGP is used to simulate a sequence of networks, which may violate some of the more specific
assumptions of the updating process in the SAOM, the TERGM should exhibit a better model
fit than the SAOM. As the properties of the DGP are modified to match the assumptions of the
SAOM, the difference in goodness of fit should disappear.

More specifically, for the SAOM DGP, we expect that a Markovian DGP without strategic
action in a moderately-sized network without simultaneous edge formation should be recovered
more adequately by the SAOM because such a process meets all theoretical assumptions of the
SAOM and its updating process is geared specifically to such a DGP. The TERGM is also compat-
ible with these assumptions but may be less precise as the it would also be compatible with other
DGPs. We simulate such a process using the NetSim package (Stadtfeld, 2013) for the statistical
programming environment R (R Core Team, 2016).

We also expect that a TERGM DGP determined by discrete updating by actors and from an
edge-based perspective using aMetropolis–Hastings network sampler as implemented in the ergm
package (Hunter et al., 2008), rather than an imposed continuous-time sequential edge updating
process by actors, should lead to a better model fit when the TERGM is estimated compared to the
SAOM because some of the specific assumptions of the SAOMmay not be met.

This comparison of two extreme cases—one directly using the DGP of the SAOM and the
other of the TERGM—serves to illustrate that these differences do matter and that one should pay
careful attention to select an appropriate statistical technique in applied research. If we do find
differences between the two models based on the two different processes, this may suggest that
empirical networks may also vary on this continuum or even beyond, and this will pave the way
for a research agenda where more focused comparisons can be conducted.

Furthermore, note that while our goal in the theoretical discussion above was to discuss the
TERGM and SAOM independently of their software implementations, software necessarily plays
more of a role in this performance-based exercise. A model is certainly not equal to its software
implementation, but the constraints and options of the software do affect the performance of
the model on real data. We try, in what follows, to be as transparent as possible about what is a
software limitation and what is a model limitation.

3.2 Out-of-sample prediction
We select the most impartial criterion for inter-model comparison possible: out-of-sample pre-
dictive performance. Out-of-sample prediction involves the fitting of a model on one dataset,
called the training set, and the application of that fitted model to a different dataset, called
the test set. This is a powerful framework for performance testing because, as long as there is
no overlap between the training and test sets, the only thing they will have in common is the
DGP. Out-of-sample prediction is an impartial criterion because (a) it is easily comparable across
methodologies, whereas other fit criteria are not; (b) in-sample prediction runs the risk of overfit-
ting, where the parameters of the models might capture idiosyncrasies of the sample rather than
the DGP6; and (c) out-of-sample prediction ensures that the model that best captures the DGP in
nature will perform best. Though it is generally possible that well-performing predictive models
do not correspond to meaningful explanatory theories, here we use it as a criterion to distin-
guish between two models that have identical right-hand-side specifications when the true DGP is
known. We see this as uncontroversial because it would be odd to claim that, between two models
with identical predictors, the model producing the worst fit should be qualitatively superior.
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Much of what follows may seem evident from other areas of statistics. However, as there is little
published work detailing the use of out-of-sample prediction with these longitudinal network
models, we take the time to consider some of the details of this methodology. In longitudinal
network models, a training set of older networks is used to predict a test set of newer networks in
the time series. Prior applications of out-of-sample prediction to SAOMs include Desmarais and
Cranmer (2012a), Kinne (2013), Koskinen and Edling (2012), and Warren (2016). There is also a
substantial literature looking at out-of-sample prediction with other network models (e.g., Chiba
et al., 2015; Montgomery et al., 2015; Ward et al., 2013).

3.2.1 Temporal heterogeneity
One may object that the DGP may change between the training and test sets, rendering the pre-
dictive exercise meaningless. If the DGP changes substantially between the training set and the
test sets, one should indeed expect to see poor out-of-sample predictive performance. However,
it is also the case that the very goal of longitudinal network models is to describe a joint pro-
cess taking place across multiple time steps. As such, if the longitudinal network model is applied
correctly, such out-of-sample testing should not be problematic because the DGP should not be
changing. If the DGPwere changing, the use of a longitudinal networkmodel, either the SAOMor
the TERGM, would be problematic. If it is sensible to assume that the same model can be applied
to all waves of a network, then it should also be sensible to estimate the same model on the first
k waves and test it on the (k+ 1)th wave using out-of-sample prediction since the DGP does not
change. Relatedly, if the model performs well out-of-sample, this is strong evidence that the DGP
has not changed.

3.2.2 Prediction or explanation?
Ultimately, most analyses are interested in explaining network phenomena rather than predicting
them (Block et al., 2019). It might seem then that a predictive exercise such as ours is assessing the
model on the wrong criteria. We disagree, however. Though we use our models to predict, they
are not specified atheoretically such that their specification is unrelated to an explanatory model.
Any model specified to explain data from a specific DGP should be applicable to new data that
emerge from the same DGP. As long as the DGP is not expected to change, as discussed above,
testing an explanatory model out of sample is a powerful means by which to judge the extent to
which it actually captures the DGP.

3.2.3 Predict network structure or edge probability?
It is not immediately clear whether a predictive exercise for network models should be attempt-
ing to predict the frequency of occurrence of certain network structures (e.g., closed triads)
(Hunter et al., 2012) or predict the formation/persistence of dyadic edges. Our solution to this
is to examine predictive performance on both, endogenous network characteristics and the loca-
tion of edges in the graph. As the literature does not host much discussion on this topic, this needs
elaboration: Though it may seem very natural to attempt the prediction of edges—indeed, such
would be the typical approach in statistics and the voluminous literature in computer science—
there is a case to be made against this approach. Consider an extreme case where the network
is generated only by endogenous network structure and not at all by exogenous covariates. In
such a case, the labels of the vertices should not matter and therefore edge prediction should
not be informative. That is, one would not expect the predictive performance of the model, at
the edge level, to differ from random, but one may be able to predict structures, such as the
number of closed triads, with substantial accuracy. This is the reason that software packages
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such as statnet (Handcock et al., 2008; Hunter et al., 2008) and RSiena (Ripley et al., 2017b;
Snijders et al., 2010) focus their goodness-of-fit tests on network structures rather than dyadic edge
predictions.

However, this extreme case is misleading as the order of vertex labels will matter inmost empir-
ical applications. On the one hand,mostmodels will feature some exogenous dyadic or vertex-level
covariates, which makes it important to predict edges between those vertices where the variation
occurs. On the other hand, the absolute location of edges and subgraph structures in the net-
work is especially important in longitudinal network models, such as the ones considered here,
because otherwise local structures cannot be carried forward from one time step to the next. It
would be highly unrealistic to assume that structures are sticky and change only as a Markov
process during the mini-step updating, but then suddenly change their location in the network
completely when the next time period starts. Therefore most useful applications feature some
degree of path-dependence of the absolute location of edges, and it is an important consideration
who is connected, rather than merely to what extent edges or certain structures show up some-
where in the network. For this reason, both measures are important aspects of model fit: auxiliary
statistics capturing certain aspects of network structure as a measure of the endogenous good-
ness of fit and the dyadic prediction performance as a measure of the extent to which edges are
predicted in the right “spot” in the network.

Furthermore, as the theory becomes more and more about exogenous factors, the more useful
edge prediction becomes. Consider the opposite extreme to that considered above: a scholar has
a theory about how exogenous factors cause edges to form in a given network. He/she models
this process with a TERGM or SAOM because he/she is worried about controlling for poten-
tial endogenous dependencies, even though they are not of primary theoretical interest. In such
a case, the dyad-wise predictive accuracy of the model would be paramount, and the extent to
which the model predicts structures would be important only to assure the scholar that he/she
had appropriately modeled any endogenous processes that may be at work.

As such, we believe both types of goodness-of-fit assessment have merit and are actually com-
plementary. It is further important to keep in mind that both types of assessment perform well
with out-of-sample prediction (as well as in-sample prediction).

3.3 Predictive methodology
We generate the out-of-sample predictions in the following way. For each of the below appli-
cations, we predict the final observation of the network using only observations that occur
temporally prior. So, for both the TERGM and the SAOM, the first network is not modeled (it is
used for temporal conditioning by both models) and the last network in the series is not modeled
either because it is the object of prediction.

For example, in a network that is observed at four time points, a TERGM for t = 2 and t = 3
is estimated based on the corresponding covariates at t = 1 and t = 2, respectively. These covari-
ates can be functions of the previous network, and in the cases we report below, we use a dyadic
stability term that captures to what extent edges and non-edges are sticky over time. Once such
models have been estimated, their resulting coefficients are used to simulate several new networks
based on the covariates at t = 3 using MCMC sampling, and the simulations created in lieu of
time point 4 are compared to the observed network at t = 4. If the simulations predict the empir-
ically observed network at time step 4 well, we can conclude that the out-of-sample predictive
performance of the TERGM is good.

The procedure for SAOMs is analogous to that of the TERGM: we let the SAOM simulate edge
changes and estimate parameters between t = 1 and t = 2 and between t = 2 and t = 3. Then we
extract the estimated parameters from the model and simulate an SAOM process forward from
t = 3 to t = 4, holding the extracted parameters constant. This is repeated multiple times in order
to yieldmultiple simulated networks. The last simulationmini-step between t = 3 and t = 4 (based
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Figure 1. Density of 100 simulated networks for the SAOM DGP and the TERGM DGP.

on unconditional estimation) is used to predict the actual network at t = 4. Both procedures, the
SAOM and the TERGM out-of-sample prediction, are thus comparable.

The actual comparison between the observed network and the distribution of simulated net-
works for the same time step is carried out in two ways: first, we assess the goodness of fit by
comparing several simulated network statistics to their observed counterparts, for example the
distribution of geodesic distances or the distribution of edge-wise shared partners (Hunter et al.,
2012). If these distributions are similar to the observed distributions, we can be confident that
the network-generating process is captured by the model. We compare this fit across the differ-
ent types of models (SAOM vs. TERGM). Second, we assess the classification performance of the
simulations produced by eachmodel using receiver-operating characteristic (ROC) and precision-
recall (PR) curves and by computing the area under the curve (AUC) for each of the two curves
(Davis & Goadrich, 2006; Hanley & McNeil, 1982; Sing et al., 2005). In other words, we assess the
extent to which dyadic states (edge or no edge between each i and j vertex) are predicted accurately
by the simulations. More specifically, these procedures provide an intuitive understanding of sen-
sitivity and specificity, or type-I and type-II error, or the true positive rate and the true negative
rate, for the prediction of edges in the network.

3.4 Evaluation of predictive fit using simulated data
3.4.1 Setup of simulation experiments
For our first test of the predictive performance of the SAOM and the TERGM, we create artificial
network data under a known DGP and then fit the same model to the networks that was used
to create the data in the first place. This does not constitute a universal test of the predictive
performance of the two models because there is an infinite set of possible model specifications
one could compare. Yet, if one of the models outperforms the other model on a relatively simple
specification across a range of different parameters, this will be a strong indicator of differential
predictive performance in general. We choose two simple DGPs that are maximally compatible
with the TERGM and the SAOM, respectively. They are based on identical, simple endogenous
network statistics and differ only in their updating processes.

First, we independently draw four parameters from a uniform distribution ranging from −3
to +3 at steps of 0.001. These are typical parameter values one could find in an empirical SAOM
or TERGM. Naturally, some combinations of these parameters (e.g., extreme combinations where
all four parameters are close to −3) may lead to degenerate simulations, i.e., full or empty net-
works. If we encounter such nearly full or empty networks, we drop the parameters and sample a
new set of parameters until they do not yield degenerate networks anymore. In practice, we drop
parameters if they lead to networks with a density smaller than 0.03 or larger than 0.97 at any
point in the sequence. Figure 1 shows the mean densities of the simulated network sequences and
their variation over the temporal sequence, after removal of degenerate specifications.
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Second, the first three of the four parameters are used to simulate a series of six networks with
20 vertices based on three model terms (and the three sampled parameters attached to them): a
baseline edges term

hedges =
∑
i�=j

Nij, (10)

(or density in the case of the SAOM), a reciprocity term,

hr =
∑
i�=j

NijNji, (11)

and a transitive triplets statistic

htrans =
∑
i,j,k

NijNikNjk. (12)

Note that the i index is removed from the sum in each case for the SAOM in order to account for
the actor-oriented perspective.

One of the two simulation experiments—the TERGM process—uses MCMC and an ERGM
formula (see Equation (1)) based on the three sampled parameters to create a single network.
Based on this simulated network, a series of five new consecutive networks (time steps t = 2 to
t = 6) is simulated forward using the same three terms as for the first network and an additional
dyadic stability term

hs =
∑
ij

Nt
ijN

t−1
ij + (

1−Nt
ij
)(
1−Nt−1

ij
)

(13)

with the fourth sampled parameter value attached to it.
For the SAOM process, an empty network is created, and the SAOM actor selection and edge

updating process is iterated five times to obtain networks from t = 2 to t = 6. For the rate-of-
change function (Equation (5)), a parameter value between 5 and 10 is sampled uniformly, which
means that each actor is expected to reconsider his or her local network configuration this number
of times per time unit (Stadtfeld, 2013). This parameter choice is based on examples in the RSiena
manual (Ripley et al., 2017b).

In both simulation experiments, the first network in the list is removed, and the five networks
that are based on the same edges, reciprocity, and transitive triplets parameters but different
treatments of the updating process are retained for further analysis. In either case, the result
of this procedure is a series of five networks that are serially correlated and based on several
simple endogenous statistics. A total of 100 such series of networks are independently created
according to these rules in each experiment, and an SAOM and a TERGM are applied to each
series of networks in each experiment. Each of these models contains an edge, reciprocity, and a
transitive triplets model term. While the TERGM contains an additional edge stability term (see
Equation (13)) for modeling the temporal updating, the SAOM uses its rate-of-change function
and the objective function to model change between the networks. Thus, these models should be
able to capture the respective original DGP well—unless their inherent assumptions limit their
ability to do so. Moreover, the generality of each model can be assessed by cross-checking the
model fit against the other DGP.

We simulate 100 sets of five consecutive networks for each procedure, estimate 100 SAOMs
and 100 TERGMs, simulate 10 new networks from each of the 100 respective models out of sam-
ple, and then assess the predictive fit (as described in Section 3.3). In both cases, the simulations
are compared against the actual last network from the series using the ROC and PR curves. To
quantify the predictive performance of each model, the AUC is computed for both curves. In each
simulation experiment, this results in 100 AUC-ROC measures and 100 AUC-PR measures for
the SAOM and the same quantities for the TERGM.
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Figure 2. Comparison of the area under the curve (AUC) for receiver-operating characteristics (ROC) and precision–recall
(PR) curves for SAOM and TERGM (with two specifications). Simulations from a data-generating process that is maximally
compatible with the SAOM (on the left), the TERGM (in the middle), and a modified TERGM restricted to exhibit positive
dyadic stability (on the right).

3.4.2 Results: Tie prediction
A two-sample t-test for ROC (t(180)= 7.21, p< .001) and PR (t(196)= 4.85, p< .001) reveals
that the fit of the TERGM models is better than the fit of the SAOM on average in the TERGM
experiment while the fit of the SAOM models is better than the fit of the TERGM on aver-
age in the SAOM experiment, though there is some statistical ambiguity for the SAOM DGP
(t(195)= −1.98, p= .049 for ROC and t(197)= −1.40, p= .162 for PR).

To see this more clearly, the left and middle panels of Figure 2 show boxplots that visualize
the distribution of all four AUC measures per simulation experiment as well as the differences
between models (diffs =AUC(TERGMs)−AUC(SAOMs), where s denotes the simulation itera-
tion). The results indicate that the TERGMs usually outperform the SAOMs in the TERGM DGP
experiment, irrespective of whether non-edges are part of the performance measure (ROC) or not
(PR), as demonstrated by the fact that most of the “diff ” distribution is positive in both cases.
There are, however, also a few cases where the SAOM fits better. Future research should investi-
gate whether this is due to a low consistency of the estimator or due to a systematic pattern. In
the SAOM DGP experiment, where the DGP of the SAOM is precisely modeled, the difference
between the estimated models is slightly in favor of the SAOM, but the significance is ambiguous
(see t-test above).

These two DGPs capture ideal-type conditions. If one deviates from the specific assumptions
compatible with either model, the difference in model fit should disappear. We test for this pos-
sibility in a third specification by altering the TERGM DGP to include only positive parameter
values for dyadic stability, as shown in the third panel in Figure 2. Empirical networks for which
the SAOM was designed, such as friendships, rest on the assumption of positive stability because
friendships are “sticky” over time. Some other empirical networks, for which the SAOM was not
originally designed, feature negative stability. Cases in point include (1) networks with a set of
rules determining alternating edges (such as speed dating networks, membership nominations
among groups of people, or sports tournaments, where individuals are not paired with people they
have previously engaged with and vice versa); (2) networks where a tie has corrective functions
and becomes redundant when the tie has served its purpose (such as punitive conflict relation-
ships or information transmission ties, where the tie becomes obsolete when the information has
been transmitted); and (3) bipartite networks with a temporally changing or passive second mode
(such as authorship networks of academics and joint papers, where an academic authors a paper
only once at most, online purchase networks of buyers and books, where a reader buys a book only
once at most, honey extraction networks of bees and flowers, where extraction leads to resource
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depletion, or sponsorship networks of legislators and bills, where a sponsorship tie is an instan-
taneous event and is not formed a second time in the next observed time period). The positive
stability specification of the TERGM DGP (third panel of Figure 2) deviates from such exam-
ples by restricting networks to be positively autoregressive and thus in better keeping with the
SAOM assumptions. The advantage in tie prediction for the TERGM disappears when this aspect
of the DGP is changed, with the AUC becoming indistinguishable between TERGM and SAOM
(t(196)= 1.30, p= .197 for ROC and t(196)= 0.459, p= .647 for PR).

The key result here is that one or the other model may have an advantage depending on the
specific nature of the DGP and the extent to which the assumptions of the network model match
the nature of the DGP. This affects aspects such as positive or negative stability as in this illustra-
tion, sequential versus simultaneous edge formation, and other aspects covered in the theoretical
discussion above.

3.4.3 Results: Endogenous fit
While the AUC comparison focuses on the actual location of edges in the network, another impor-
tant feature is whether a model fits well in terms of its endogenous properties. This aspect of the
goodness of fit can be checked by comparing auxiliary statistics like the shared partner distri-
bution, the degree distribution, and the distribution of geodesic distances between the originally
observed network and the out-of-sample simulations of the model for the same time step. In
order to compare the 100 SAOMs and TERGMs per study, we plot the difference between the
absolute deviation of the median TERGM simulation from the original network and the absolute
deviation of the median SAOM from the original network. If as denotes the original observa-
tion of an endogenous statistic (e.g., how many dyads in the network have exactly four dyadwise
shared partners?) for the sth simulation, bs denotes the median of same count for the sth TERGM,
and cs denotes the median for the SAOM, then

diffendogenous = 1
100

·
100∑
s

|cs − as| − |bs − as| (14)

is the difference in deviations from the original network for a given statistic. Values above 0 reflect
a greater deviation from the true value for the SAOM, and values below 0 reflect a greater deviation
from the true value for the TERGM.

Figure 3 uses boxplots to visualize the distributions of these values for the three DGPs. There
are no noticeable systematic differences between the two models across the three DGPs, with the
medians usually being around zero, with a few exceptions.

The preliminary main finding here is that the two models seem to capture endogenous struc-
ture equally well irrespective of context. Thus, it is fair to say that both models arrive at roughly
the same conclusions regarding the topology of the network, while they differ in their assessment
of which vertices are involved in the respective edges or structures, depending on the assumptions
built into the model and their match with the respective DGP.

As a caveat, we should note that this comparison is only based on a subset of the theoretical
differences enumerated above. For example, strategic action or the size limitation were not tested
for detrimental effects on model performance, so we cannot rule out that endogenous perfor-
mance differs as well in some applications. The next section introduces such a case of diverging
endogenous fit in an empirical context.

Even if an exhaustive answer about predictive performance cannot be given due to the infinite
set of possible models one could test, this simulation exercise is simple and plausible enough to
provide a first hint that the two models may differ in a range of applications where the DGP is not
perfectly in line with the specific assumptions of the respective model. This underlines the need
for comparative goodness-of-fit assessment in empirical applications to justify model selection.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2018.26
Downloaded from https://www.cambridge.org/core. University of Glasgow Library, on 19 Feb 2021 at 20:54:11, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2018.26
https://www.cambridge.org/core


40 P. Leifeld and S. J. Cranmer

SAOM DGP TERGM DGP TERGM (positive stability) DGP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
dg

e−
w

is
e 

sh
ar

ed
 p

ar
tn

er
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ya

d−
w

is
e 

sh
ar

ed
 p

ar
tn

er
s

0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718

In
de

gr
ee

0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718

O
ut

de
gr

ee

1 2 3 4 5 6 7 8 9 10 11 12 13 Inf 1 2 3 4 5 6 7 8 9 10 11 12 13 Inf 1 2 3 4 5 6 7 8 9 10 11 12 13 Inf

G
eo

de
si

c 
di

st
an

ce
s

0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718 0 1 2 3 4 5 6 7 8 9 101112131415161718

In
co

m
in

g 
k−

st
ar

s

Figure 3. Endogenous model fit. Simulations from a data-generating process that is maximally compatible with the respec-
tive model. Comparison of the SAOM and the TERGM for each DGP based on endogenous network properties. The boxplots
show the difference between the absolute deviation of the TERGM from the original data and the absolute deviation of the
SAOM from the original data. Distributions above 0 indicate a better performance of the TERGM, and distributions below 0
indicate a better performance of the SAOM.

4. Real-data example: Replication of a friendship network SAOM
So far, we have established that there are theoretical differences between the updating processes
of the TERGM and the SAOM, with a more specific process posited by the SAOM. Even in a
simple simulation exercise, these differences have been shown to be consequential for the infer-
ential performance of the respective model, at least with regard to edge prediction, but we do not
know yet which specific aspects cause these differences. Out-of-sample prediction is a useful tool
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for comparing the performance of the two models on a given (simulated or empirical) dataset,
though this certainly does not replace the role of theory in guiding model selection (cf. Block
et al., 2019).

The remainder of this article is dedicated to these further points: Sometimes theory is not suf-
ficient to evaluate a priori if the assumptions of one model are reasonable in a given context or
if the other respective model should be used instead, as further research is needed on whether
and how the theoretical differences translate into different empirical performance. For example,
even in apparently well-studied empirical contexts (such as the example provided below), the spe-
cific updating posited by the SAOM may not be at work, leading to a better performance of the
TERGM. Therefore, when in doubt, users can easily use our companion software to assess the
out-of-sample performance of both models. This will contribute in the long run to our collec-
tive understanding of the contexts in which one model should be chosen over the other model.
Moreover, we will demonstrate by example that empirical cases exist where endogenous model fit
differs out of sample between the two models (in contrast to the simulations, where performance
regarding edge prediction differed).

To make these points, we illustrate the performance-based comparison of the SAOM and the
TERGM by replicating an analysis reported by Snijders et al. (2010). Substantively, the authors
model a friendship network in a Dutch school class over several time steps. The data were orig-
inally collected by Knecht (2006, 2008) and later used as the primary example for introducing
SAOMs (Snijders et al., 2010). According to what we believe we know a priori about friendship
networks, the SAOM should be well suited for modeling the evolution of friendship because the
updating assumptions as set out above seem to be reasonable in this context. The SAOM was
originally designed with the application of friendship network evolution in mind, and friendship
networks are still one of the primary fields of application. Furthermore, the application we con-
sider is a frequent example used in expository papers, workshops, and tutorials for the SAOM.
The application has been studied extensively with the SAOM and is “standard” in its literature.
Therefore this empirical application serves as a critical test case that is maximally tailored to the
assumptions of the SAOM. For example, more specifically, one could argue that it is reasonable
to think that actors do in fact change their relations one at a time without coordination and that
actors will alter their edges to “improve” their position in the network.

The friendship networks under study were measured between September of 2003 and June of
2004. The data consist of 26 students in their first year of secondary school and were recorded in
four waves over the period of study. The subjects, 17 girls and 9 boys aged 11–13, were asked to
nominate up to twelve classmates they considered “good friends.”

To address the fact that friendship networks tend to be reciprocal, sex-segregated, and show
tendencies towards triadic closure, Snijders et al. (2010) include reciprocity (see Equation (11)),
transitive triplets,

ht-trip =
∑
j,k

NikNijNjk, (15)

transitive edges,

ht-edges =
∑
k

Nik max
j

(
NijNjk

)
, (16)

three-cycles,

hc =
∑
j,k

NijNjkNki, (17)
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and an indicator for when friendship edges are sexually homophilous, thus capturing sex
segregation:

hsame-sex =
∑
j

NijXij. (18)

Furthermore, they include the following degree-based measures as controls: indegree popularity

hin-pop =
∑
j

Nij
√
N+j, (19)

out-degree popularity

hout-pop =
∑
j

Nij
√
Nj+, (20)

out-degree activity

hout-act =N1.5
i+ , (21)

as well as exogenous indicators for male respondents (as a sender effect and as a receiver effect)
and friendship in primary school.

We replicate a specification used by Snijders et al. (2010) for this comparison. Table 1 shows the
results of a faithful reanalysis of their “Model 0,” the most elaborate model without actor–behavior
co-evolution reported by Snijders et al. (2010), and a TERGMwith the same specification. In other
words, both models include effects for Equations (11) and (15–21). Our goal is not to make a
theoretical contribution to the friendship literature or to find the best possible fit to these data. As
a consequence, we retain the canonical and widely replicated specification used by Snijders et al.
(2010) rather than formulating a novel specification.

While themodel terms are faithful to the original analysis by Snijders et al. (2010), the estimates
reported in Table 1 are based on a reduced dataset with the last time step removed in order to per-
mit out-of-sample prediction. To get as close as possible to the SAOM’s rate-of-change function
and mini-steps, a dyadic stability term (Equation (13)) is added to the TERGM, which accounts
for the inertia of both edges and non-edges in the DGP. While an SAOM models the change
between time steps t − 1 and t, a TERGM models the state of the network at t, and therefore
the change between t − 1 and t can be introduced into the model by conditioning on the edges
and non-edges of the network at t − 1 via the dyadic stability term. The SAOM is estimated by
method of moments as is standard in the SAOM literature and the default estimation option for
the software. The TERGM is estimated by MCMC-MLE. As the same information (the previous
and current networks) and the same number of parameters (the parameters for the model terms
and the rate parameter versus the stability term) enter both models, there is no reason to expect
a priori that either of the two models should predict the last time step more successfully than the
other model with an identical set of model terms, unless the assumptions the respective model
makes do not capture the true DGP.

The results differ substantially between the two models. Neither model shows signs of degen-
eracy (see Appendix A.2 for degeneracy diagnostics). The coefficients are scaled differently and so
should not be compared directly, but in several cases even the direction and significance of esti-
mates is reversed. In particular, transitive triplets, transitive edges, indegree of alter, and outdegree
of ego yield substantively different conclusions. If these effects were of substantive interest to the
researcher, this divergence would be alarming. The cause for this divergence of substantive results
likely has much to do with the fit of these models, so we turn our consideration to that topic.

Although we could try to tweak the two models and deviate from the model suggested by
the original authors in order to improve model fit altogether, this would make our analysis vul-
nerable to criticism because doing so may favor one of the models over the other. Therefore
we try to remain as impartial as possible by re-using the theoretical specification proposed by
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Table 1. Reanalysis of “Model 0” from Snijders et al. (2010) using the SAOM and TERGM, based on the first three time steps
of the Knecht data

SAOM TERGM

Density/edges −2.01 (0.60)∗∗∗ −10.45 (0.95)∗∗∗


Reciprocity 1.54 (0.29)∗∗∗ 2.43 (0.38)∗∗∗


Transitive triplets 0.34 (0.06)∗∗∗ 0.06 (0.05)


Cyclic triplets −0.27 (0.10)∗∗ −0.49 (0.13)∗∗∗


Transitive ties 0.60 (0.27)∗ 0.14 (0.21)


Indegree of alter (sqrt) 0.08 (0.18) 1.44 (0.24)∗∗∗


Outdegree of alter (sqrt) −0.56 (0.23)∗ −0.02 (0.13)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outdegree of ego (sqrt) 0.04 (0.11) 1.81 (0.21)∗∗∗


Same primary school 0.45 (0.17)∗∗ 0.65 (0.26)∗


Male (alter) −0.03 (0.17) 0.29 (0.24)


Male (ego) 0.30 (0.16) 0.61 (0.23)∗∗


Male (match) 0.69 (0.16)∗∗∗ 1.81 (0.27)∗∗∗


Rate parameter period 1 9.27 (1.68)∗∗∗


Rate parameter period 2 9.36 (1.66)∗∗∗


Dyadic stability 1.09 (0.13)∗∗∗

∗∗∗p< 0.001, ∗∗p< 0.01, and ∗p< 0.05.

Snijders et al. (2010). Furthermore, the estimates of both models are roughly comparable with
the estimates gathered from identical models applied to all four time points. This indicates that
the DGP does not change between the first three waves and the last wave, which is used for
out-of-sample prediction.

We use out-of-sample prediction of time step 4 to assess which model fits the data best. To do
so, we estimate the models without information on the network at the last time step (as reported
in Table 1), simulate 100 new networks in lieu of the last time step and based on the model, and
compare these simulations to the observed network at the fourth time step. Given that we have
a theoretically informed model as specified by Snijders et al. (2010), comparable right-hand-side
specifications, and real data that correspond well in principle to the SAOM’s DGP, the model that
produces better out-of-sample predictive fit is the model doing a better job of capturing the DGP
that exists in nature. Figure 4 presents boxplots of endogenous network statistics (auxiliary statis-
tics) in the simulated networks (as shown by the colored boxplots) versus the observed network
(indicated by a black line). This approach focuses on the structure of the network irrespective
of the ordering of the actual vertices. Very good fit occurs when the observed data intersect the
medians of the predicted data. Figure 5 shows the ROC and PR curves as well as the area under
these curves as complementary measures of the goodness of fit. These measures take into account
the ordering of the actual vertices and assess classification performance of the models, that is, the
number of dyads predicted correctly by the simulations.

The comparison of the boxplots across the two models reveals that the TERGM fits sub-
stantially better than the SAOM in this case. With all four auxiliary statistics, the simulated
networks capture the observed network much more closely. Overall, there is some small room
for improvement even in the TERGM, but the fit seems adequate for an out-of-sample prediction.

The ROC and PR comparison also confirms that the TERGM has a better out-of-sample model
fit, by a large margin. The TERGM outperforms the SAOM presented here significantly regarding
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work statistics for simulations based on the estimated TERGM (SAOM) model. The TERGM fits better on average in this
empirical application.
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the state of the specific dyads, no matter whether non-edges are part of the prediction task (as in
the ROC curve) or not (as in the PR curve).

The difference in model fit is at least partially attributable to the dyadic stability term, which
conditions on the previous state of the network. By design of its updating process, the SAOM
does not include this simple explanation to the assumed DGP. This suggests that the differences
in substantive results between the two models, including the striking difference in the transitivity
effect, havemuch to do with temporal dependencies. By directly conditioning on past interactions,
the TERGM finds that transitivity is not an ongoing part of the friendship formation process,
though it likely was during the formative period of the network. Because the process that led to the
first observed network is not modeled in either the SAOMor the TERGM, it should not per se lead
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us to believe that the transition between observed matrices from time steps t1 to t3 is characterized
by transitive closure on top of what was already present in the network at t1. The TERGM shows
that if two simple explanations are tested—inertia through carrying past friendships forward, and
engaging in transitive closure—then inertia dominates and transitivity becomes irrelevant.

Three lessons can be learned from this replication exercise, though the lessons of an individual
replication do not necessarily apply to other cases. First, even in a social context around which the
SAOMwas originally designed, the TERGM can sometimes outperform the SAOMwith regard to
predictive performance. This is particularly noteworthy because both models were parameterized
as similarly as possible. The only differences are the core assumptions inherent in the two models:
the rate function and the mini-step updating process of the SAOM versus the dyadic stability term
added to the TERGM. Just like the updating process in the SAOM, the dyadic stability term in the
TERGM is a very specific way of modeling time dependencies. Yet the TERGM is considerably
more flexible as to what kinds of temporal dependencies can be added should the DGP turn out to
be of a different kind (e.g., edge innovation or loss, autoregression, delayed reciprocity etc.). Here,
merely conditioning on the previous time step explicitly yields a better prediction of the successive
time step than Markovian mini-step updating from the previous time step onwards. However, it
is not clear whether this is the only or even the decisive mechanism leading to different model
fit as the SAOM is built around a range of specific assumptions any of which could have led the
updating process astray.

Second, even though we had no reason to cast doubt on the reasonableness of the SAOM
updating process in the case of friendship networks a priori, it turned out that the estimates and
simulations produced by the TERGM are more closely aligned with the observed network. This
is somewhat surprising and leads us to conclude that a priori model choice cannot always be
informed by theory alone, at least given our current knowledge as to what is causing the limi-
tations of the SAOM in this specific case. Candidates were enumerated above in the theoretical
section. This underlines, once more, the need for more focused simulation experiments on each
of the differences between the models separately.

And third, since theory alone cannot be evoked at the present time to choose one model over
the other, we suggest the use of out-of-sample prediction in any given application to informmodel
choice for the time being. Our companion software (Leifeld et al., 2017, 2018) makes such com-
parisons trivial. If many such comparisons are reported, this may soon lead to a better collective
understanding of the contexts in which the TERGM is indeed to be preferred over the SAOM
and vice versa and therefore provide complementary evidence to the simulation experiments
suggested above.

5. Conclusion
We have shown that the TERGM and SAOM share a similar mathematical core, but differ with
respect to several important assumptions about how the network evolves between observations.
More specifically, the SAOM posits a particular process by which an observed network at t − 1
transitions into the observed network at t. This process involves two stochastic sub-processes in
which (a) vertices are selected for a chance to update their edge profiles and (b) the choice to
change (make a new or dissolve an existing) an edge or not is made. The TERGM, conversely, is
less specific. Though the TERGM is potentially consistent with a broader set of dynamic network
processes, the SAOM could be though more appropriate in cases where its updating process is
consistent with theory.

We conducted two comparative analyses of the TERGM and SAOM. In the first, we simulated
data from a simple, entirely endogenous DGP. This was an instructive exercise because the ground
truth was known, and we could judge clearly which models recovered coefficients closest to the
actual DGP. Here, we found that both models performed similarly with regard to endogenous

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2018.26
Downloaded from https://www.cambridge.org/core. University of Glasgow Library, on 19 Feb 2021 at 20:54:11, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2018.26
https://www.cambridge.org/core


46 P. Leifeld and S. J. Cranmer

network properties but differently and in line with their respective assumptions with regard to tie
prediction. Second, we considered a real-data example that maximally conforms to the updating
process and application area for which the SAOM was designed: a friendship network of students
in a Dutch school. In the real-data application, we replicated an SAOM that is commonly used in
RSiena documentation and workshops. We found that, when considering out-of-sample predic-
tive performance, the TERGM outperformed the SAOMby a substantial margin, both with regard
to endogenous structures and the location of edges in the network.

From a theoretical perspective, a tentative conclusion we might reach, given the core similarity
of the two models but the detailed updating process proffered by the SAOM, is that the SAOM
should performwell when its core assumptions are met but the TERGMmay perform better when
they are not. This is supported by the simulation study where the SAOM and the TERGM could
recover their respective underlying DGPs best. This conclusion, though, is in tension with our
real-data example: indeed, even on the type of data for which the SAOM was designed and which
the developers of the SAOMuse as an expository case, the TERGM out-performed the SAOM. Yet
it is not the case that the TERGM always outperforms the SAOM: even with the TERGM DGP, a
small fraction of the simulations were apparently more readily explained by the updating process
of the SAOM (while the majority of these simulations could be better predicted by the TERGM).
Our conclusion thus must be that the need of the SAOM to have its updating assumptions met
with a high degree of precision is essential in order for that specific model to outperform the more
general TERGM.

This discussion illustrates that it is usually not possible to choose the SAOM or the TERGM
over their respective alternative purely on theoretical grounds. This may be true even when the
researcher has certain a priori expectations with regard to the updating process and the degree to
which the assumptions of each model are or are not met, as illustrated in the empirical replication
exercise. Because theoretical conformity to the DGP of the SAOMdid not yield predictable results,
we must be careful not to put too much stock into the a priori selection of a model. Rather, as it
is straightforward to contrast the out-of-sample (or in-sample) predictive performance of the two
models—the btergm package (Leifeld et al. 2017, 2018) has easy-to-use functions for making such
comparisons—the prudent researcher may be advised to do so. Future applications of statistical
network models for discretely observed dynamic networks should therefore by default take into
account their respective alternative(s) and produce theoretical knowledge through comparison of
out-of-sample predictive fit where possible, or at least report the results of both models (provided
that both can be estimated).

We have employed a range of methods in comparing predictive fit: side-by-side comparison
of endogenous model fit through boxplots as in Figure 4; edge prediction curves as in Figure 5;
and a direct comparison through subtracting deviations between the TERGM and the observed
value from deviations between the SAOM and the observed value on the respective statistic
(Equation (14) and Figure 3). Applied researchers can use these methods for model comparison.
Future research should explore more formal significance test procedures for making such com-
parisons, for example through a one-tailed t-test of the differences in Equation (14) from zero or
through more elaborate means.

Finally, we have only touched the surface of this topic by contrasting carefully selected extreme
cases. Much more work needs to be done in order to carve out which of the specific parts of
the models lead to the differences we could observe. Our theoretical section offers a number of
suggestions on factors that could make a difference. Future research will need to evaluate these
factors as impartially as possible using simulation experiments and possibly carefully selected case
studies.
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Notes
1 There is a substantial literature on why regression models are inappropriate for network data. That is not a subject we will
examine here as it has already been well covered elsewhere. This literature begins with reviews of the work by Sir Francis
Galton (Dow et al., 1984), but also includes more recent work, such as Hoff et al. (2002), Hoff and Ward (2004), Goodreau
et al. (2008), Lerner et al. (2013), Cranmer and Desmarais (2011), and Cranmer et al. (2017).
2 Both models are also related to the relational event model (REM) (Butts, 2008) and the dynamic network actor model
(DyNAM) (Stadtfeld & Block, 2017)—two separate longitudinal network models that are applicable to temporally fine-
grained sequences of edges (for a comparison of the two, see the debate by Stadtfeld et al. (2017a, 2017b) and Butts (2017)).
While the four models share the property that one can incorporate sufficient statistics for capturing network dependence, the
REM and DyNAM are not considered further in our comparison because they are not applicable to panel network data.
3 We consider the original formulation of the SAOM as a model of network change here. For a discussion on SAOM variants
pertaining to the behavior of actors, see Section 2.4.6.
4 In addition to an autoregressive memory term, the TERGM can include statistics that model the evolution between two or
more consecutive time points as a process, for example delayed reciprocity over two time points or triadic closure over three
time points. Thus, TERGMs need not be merely autoregressive but can model temporal change directly. An autoregressive
TERGM without additional temporal dependence is a simple specification that may or may not be a good choice in a given
empirical context.
5 Note that onemight also approach this question by conducting simulation experiments in order to test each of the identified
differences for an impact on model performance. For example, one could test whether increasing levels of edge simultaneity
in the DGP lead to a deterioration of model performance in the SAOM and in the TERGM, respectively, all else being equal.
Our theoretical comparison suggests that both models should fit equally well if all edges are sequentially established while
the TERGM should have a relative advantage with increasing prevalence of multiparty edge events or incentives for collective
action. However, so many separate simulation experiments would far exceed the page length boundaries afforded by a journal
article.
6 A model that is overfitted will predict well in-sample (e.g., on the training set), but poorly out-of-sample (e.g., on the test
set).
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Appendix A
A.1 Alternative Memory Terms for the TERGM
As memory terms in TERGMs have not received extensive treatment outside of Leifeld et al. (2018), the reader may wish to
consider several example memory terms beyond what we discussed in the main text. The memory terms considered below
are based on those in the extensive discussion from Leifeld et al. (2018) and are by no means exhaustive, as a memory term
can include arbitrary functions of time.

Several intuitive and convenient memory terms are as follows:

1. Positive autoregression (lagged outcome network): ha = ∑
Nt
ijN

t−1
ij .

This memory term adds value to the statistic any time an edge persists from one period to the next. Note that it can be
modified by adding dependencies on networks further removed than K = 1. Note, too, that, as formulated above, this
is equivalent to adding a lagged network as a covariate in the TERGM.

2. Dyadic stability: hs = ∑
ij Nt

ijN
t−1
ij + (

1−Nt
ij
)(
1−Nt−1

ij
)

Dyadic stability is a straightforward extension of positive autocorrelation, but accounting for positive autocorrelation
in nonexistent edges as well as existing ones. This simple statistic was also discussed in the main text.
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Figure A.1. MCMC trace plots for the empirical TERGM. The MCMC traces show that the empirically estimated TERGM is not
degenerate as all statistics are in a stationary distribution over the duration of the 20,000 iterations.

3. Edge innovation/loss: he = ∑
ij Nt

ij
(
1−Nt−1

ij
)
(innovation) and hl =

∑
ij
(
1−Nt

ij
)
Nt−1
ij (loss).

These memory terms focus on the formation of new edges (innovation) or the dissolution of existing edges (loss)
between time periods.

4. Delayed reciprocity (ego delays): ha = ∑
Nt
ijN

t−1
ji .

This statistic skirts the edge between a memory term and an endogenous dependency. It is a reciprocity statistic in
which the ego reciprocates only after the alter has formed an edge to it. An alter-delays version may be created by
swapping the order of i and j in the subscripts.

A.2 MCMC Diagnostics for the Empirical Model
Figures A.1 and A.2 show degeneracy checks for the empirical TERGM and indicate that the model is not degenerate.
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Figure A.2. MCMC density plots for the empirical TERGM. The density curves show the distribution of deviations along
the time axis in Figure A.1 and indicate that the empirically estimated TERGM is not degenerate as all deviations are
approximately normally distributed.
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