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 A RELATIONAL EVENT
 FRAMEWORK FOR SOCIAL
 ACTION

 Carter T Butts*

 Social behavior over short time scales is frequently understood
 in terms of actions, which can be thought of as discrete events in
 which one individual emits a behavior directed at one or more other

 entities in his or her environment (possibly including himself or her
 self). Here, we introduce a highlyflexibleframeworkfor modeling
 actions within social settings, which permits likelihood-based in
 ferencefor behavioral mechanisms with complex dependence. Ex
 amples are given for the parameterization of base activity levels,
 recency, persistence, preferential attachment, transitive/cyclic in

 teraction, andparticipation shifts within the relational eventframe
 work. Parameter estimation is discussed both for data in which an
 exact history of events is available, and for data in which only
 event sequences are known. The utility of the framework is illus
 trated via an application to dynamic modeling of responder radio
 communications during the early hours of the World Trade Center
 disaster.
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 156 BUTTS

 1. INTRODUCTION

 Human activity over short time scales is frequently understood in terms
 of actions, which can be thought of as discrete events in which one in
 dividual emits a behavior directed at one or more other entities in his
 or her environment (possibly including himself or herself) (Bates and
 Harvey 1975). For instance, participants in a conversation may direct
 speech, gestures, or movement toward objects, locations, or other per
 sons in the environment (Goffman 1967). Actions need not be solely,
 or even primarily, communicative: for instance, a paramedic interacting
 with an injured patient may direct both conversational and physical ac
 tions toward him or her, move objects in the environment (e.g., removing
 clothing or applying a compress), or travel to another location (e.g., a
 nearby ambulance) to obtain additional tools. Nor must actions take
 place entirely within the physical domain; careers are readily modeled as
 sequences of actions such as job changes and workforce entry/exit (see
 Abbott [1995] for this and many similar examples), and Heise (1991)
 provides an empirical example in which the research and publication
 process is itself represented as a series of institutionally defined actions.
 Actions and their effects rarely exist in isolation, generally being as
 sumed to have social meaning for the actor and/or outside observers
 (Goffman 1 963a) and often being constrained by physical, institutional,
 or psychological constraints (Abell 1987; Heise 1989). Processes posited
 to explain such behavior vary widely, ranging from imitation (Miller,
 Butts, and Rode 2001) and culturally defined "programs" or "scripts"
 (Axten and Skvoretz 1980) to learning (Macy 1991) and optimization
 (Coleman 1990). While many of these perspectives are in substantial
 disagreement about the mechanisms that underlie action, they arguably
 have a mutual intersection around a common, "core"l notion of action
 per se as a directed behavioral event, potentially contingent on past history

 (Heise and Durig 1997).
 This suggests, from a modeling perspective, that a framework cen

 tered on this minimal conception of social action-but with the capac
 ity to incorporate various competing theoretical "overlays"-is likely
 to prove especially fruitful (a point of view advocated by Bates and
 Harvey [1975], Heise [1989], and Fararo and Skvoretz [1986], among
 others). To be useful, such a framework must also permit inference
 from behavioral data, so as to allow for the estimation of the relative
 strengths of potential mechanisms as well as for principled selection
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 RELATIONAL EVENT FRAMEWORK 157

 among competing models. This is a particularly central concern, since
 prior work in this area has generally resulted in formal systems which are

 deductively sophisticated (classic examples include Skvoretz and Fararo
 [1980]; Skvoretz [1984]; Abell [1987]; and Heise [1989]), but which have
 lacked a correspondingly well-developed inferential theory. Such sys
 tems have proved to be conceptually powerful but difficult to deploy
 outside of very restricted empirical settings. Alternately, models based
 on assumptions of stationarity (e.g., Markov chains) or purely data ana
 lytic approaches (e.g., distance-based sequence comparison) are respec
 tively limited in their ability to capture complex temporal dependence
 (on the one hand) and to provide a principled basis for parameter estima
 tion and uncertainty assessment (on the other). (See Abbott [1995] and
 Abbott and Tsay [2000] for reviews in the context of sequence analysis,
 and Levine [2000] and Wu [2000] for related critique.) Here, we intro
 duce a framework that attempts to preserve many of the assets of the
 action-oriented approach without neglecting the problem of inference,
 organizing our treatment around a formal notion of relational events
 (discussed below). The proposed framework allows for the modeling of
 complex dependence among actions, differential treatment of action by
 type, nonstationary behavior, and influences due to exogenous covari
 ates. Dependencies among actions may be parameterized so as to allow
 very general effects of past history on present behavior, including con
 tingent constraints on which behaviors may possibly be enacted. The
 framework also supports likelihood-based inference, thereby facilitat
 ing the empirical evaluation of competing explanations for social action
 within particular settings.

 To illustrate the practical utility of the relational event frame
 work, we also demonstrate its use within a specific context. In partic
 ular, we here apply the relational event framework to the problem of
 modeling communication behavior within emergency settings. Actors
 operating within such settings face severe environmental constraints, as
 well as cognitive limitations (e.g., narrowed attention [Hockey 1979])
 and an unstable social context (e.g., due to disrupted role performance
 [Dynes 1970:176]). Nevertheless, both trained and untrained actors will
 attempt to respond to hazardous conditions, taking action to obtain
 safety for themselves and others (Quarantelli 1960; Mileti et al. 1975;
 Abe 1976; Noji 1997). While many factors affecting behavior in crisis
 settings have been identified through past field studies (e.g., see Drabek
 [1986] for a review), sorting through them has proven difficult: without
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 158 BUTTS

 a systematic way to combine and compare mechanisms, it is rarely
 possible to adjudicate among competing explanations (much less to
 make quantitative statements of relative importance). Using the mod
 eling framework developed here, such comparisons can be performed
 using data (such as radio transcripts or event logs) that can often be
 obtained in field settings. Here, we illustrate this potential via the appli
 cation of the relational event framework to radio communication data
 collected on the World Trade Center (WTC) disaster by Butts et al.
 (2007).

 The overall structure of the paper is as follows. We begin by de
 scribing the general modeling framework, deriving the form of the like
 lihood function in the case when full temporal information is available
 regarding actors' behaviors. We then consider the special case in which
 only sequential information is available (i.e., without detailed informa
 tion on event timing), and show that the model can still be identified
 up to a pacing constant. For both cases, the substantive content of a
 relational event model is determined by a broad family of sufficient
 statistics expressing the effect of past history and/or exogenous influ
 ences on future behavior; we thus follow the above by a discussion of
 several families of such statistics, including both formal definition and
 substantive motivation. Parameter estimation and computational issues
 are then discussed. Finally, we close with an illustrative application of
 the relational event framework to radio communication in the World
 Trade Center disaster.

 2. RELATIONAL EVENT MODEL

 As we have emphasized, generalized modeling of behavior in set
 tings ranging from conversation to crisis situations requires the abil
 ity to incorporate a wide assortment of cognitive, behavioral, and so
 cial/contextual processes. To that end, we provide here a framework for
 the dynamic modeling of social action that is capable of incorporating all
 three factors; in this way, our approach can be seen as following within
 the broad tradition of agent-based models, which seek to capture so
 cial action by direct modeling of microdynamics. (See Macy and Willer
 [2002] for a recent review of sociological uses of this approach.) Unlike
 traditional agent-based modeling schemes, our approach draws upon
 event-history analysis (e.g., Blossfeld and Rohwer [1995]) to formulate
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 RELATIONAL EVENT FRAMEWORK 159

 models that can be fit directly to data. On the other hand, our ap
 proach is also unlike that employed in most familiar statistical contexts,
 in that we allow for complex structures of historical dependence among
 observed events. Such "hybrid" model families are of increasing im
 portance within the social sciences, particularly when dealing with phe
 nomena such as social networks (e.g., see Snijders [1996]; Robins et al.
 [2001]; Wasserman and Robins [2005]; Hunter and Handcock [2006]) or
 location systems (Butts 2007a) in which system components are nearly
 always interactive. By building models that are both theoretically in
 formed and inferentially tractable, we hope to obtain important new
 insights into the processes underlying social dynamics.

 The central element of our modeling approach is the relational
 event, or action, which is defined as a discrete event generated by a so
 cial actor (the "sender") and directed toward one or more targets (the
 "receivers,"5 who may or may not be actors themselves); without loss of
 generality we restrict ourselves to the single sender/receiver case. (To
 treat simultaneous joint action by multiple senders and/or receivers, we
 simply create one or more "virtual" senders and/or receivers that repre
 sent subsets of the original sender/receiver set.) We represent actions by
 tuples of the form a = (i, j, k, t), where i E S represents the sender of the

 action, j E 7Z represents the receiver of the action, k E C represents the
 action type, and t E RI represents the time at which the action is taken.
 For purposes of the present development, we will assume that each
 action is associated with a single time point. As noted above, the ele
 ments of S and 7Z need not correspond to individual agents-collective
 entities, sets of individuals, or even inanimate objects may constitute
 potential senders or receivers of action, depending on the system being
 modeled. For convenience, we also define functions s, r, c, and r, which
 return (for any given action) the sender, receiver, action type, and time
 (respectively).

 Given a time-ordered set of actions al, a2,..., let the set At =
 {ai : r(ai) < t} consist of all actions taken on or before time t. For conve
 nience, we also define a null action, ao, such that r(ao) = 0, and (without

 loss of generality) take r(a ) > 0 V a i E At. The null action serves as a
 placeholder for the onset of events in the process under study; while we

 assume that ao E At, we will condition our analyses on the realization
 of ao (i.e., we will treat the onset of observation as exogenously deter
 mined). While ao is fixed, the other events in A, are stochastic, and our
 interest will be in modeling them.
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 160 BUTTS

 For the family of models proposed here, we assume that actions
 occur via an inhomogeneous, locally Poisson-like process such that ac
 tions arise independently conditional on the realized history of previous
 actions (along, possibly, with covariates). Of course, not all actions arise
 at the same rates, and the rate structure itself may evolve endogenously
 based on the events that are realized; thus, it should be emphasized that
 the assumption of conditional independence of events does not imply

 marginal independence, nor temporal independence. Rather, we more
 modestly assume that past history creates the context for present action,
 forming differential propensities for relational events to occur. Once an
 event occurs, this alters the context of action, and the process begins
 anew. Put another way, the conditional independence assumption can
 be understood as presuming that current events are not subject to (1) un
 controlled third-variable effects, (2) influences from the realization of fu
 ture events (i.e., reverse causality), and (3) influences from the nonoccur
 rence of other events since the last realized event. Where third-variable
 effects are expected, they may be controlled either by employing them
 as covariates, or (in some cases) by appropriate use of fixed or random
 effects. Thus, the main substantive constraints employed here are those
 of no reverse causality and no influence from current nonevents. True
 reverse causality would be a highly exotic assumption (to say the least),
 but apparent reverse causality can result from phenomena such as errors
 in recorded event timing or certain types of third-variable effects (e.g.,
 unobserved information diffusion regarding an action that has been de
 termined but has not yet been taken). Where such processes are at work,
 care must be taken to ensure that the data set includes all causally rele
 vant information. Influence from contemporaneous nonoccurrence can
 similarly appear as an artifact of missing data or third-variable effects,
 but can also occur due to underlying social processes. For instance, in
 strategic settings, the observation that an opponent has not exploited a
 potential weakness may change one's model of the opponent's knowl
 edge, thereby altering one's own propensity to engage in a particular
 action. Thus, systems in which actors are strategically oriented, able
 to engage in significant forward-looking behavior, and have substantial
 time for observation and reflection may not be well-suited for model
 ing via this framework. (Since current evidence suggests that forward
 looking behavior is usually limited even in highly incentivized strategic
 settings (e.g., see Camerer [2003]), this may be less of a problem than
 might be feared.) By contrast, systems in which actors must respond
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 RELATIONAL EVENT FRAMEWORK 161

 quickly, are unable to engage in forward-looking behavior, and/or lack
 strategic orientation are less likely to violate the independence assump
 tion. Alternately, systems for which behavior is strongly influenced by
 past events may be well-approximated by the conditional independence
 assumption even where some contemporaneous nonoccurrence effects
 exist: so long as the latter effects are small compared with the effects
 of the former (in the sense of relative changes to the event hazard), the
 system will approximate the conditionally independent case.

 In addition to determining the relative rates at which current
 events transpire, the history of past events can also affect which actions
 are possible-for instance, certain actions may remove a potential target
 from the receiver set, or enable new types of actions to be taken. To allow

 for such constraints to be satisfied, we define the support set A(A,) C
 S x R. x C to be the set of all sender/receiver/type combinations that
 are possible at time t, given the realized history At. The specific form of
 this dependence is taken to be exogenous and known, but is otherwise
 largely unrestricted; the two key assumptions utilized here are that the
 number of possible actions is finite for all realized histories, and that
 the set of possible actions is fixed between events (i.e., context shifts can
 change the set of possible actions, but such changes are fixed until the
 next event occurs). Both of these assumptions can be relaxed, but we
 do not pursue such possibilities here. In addition to accounting for any
 dynamic constraints on possible actions taken, A may also incorporate
 invariant limitations on the set of realizable events. For example, an
 action type such as "repair" may be directed by a human actor toward
 a vehicle, but it is rarely feasible for a vehicle to "repair" a human actor.

 The above preliminaries in hand, we are now ready to specify the
 likelihood function for a realized relational event history. As is often the
 case in building event-based models, we begin by specifying the process
 in terms of its hazard and survival functions (e.g., see Blossfeld and
 Rohwer [1995]). For an arbitrary random variable X with probability
 density functionf and cumulative distribution function F, the survival
 function S is defined by S(x) = 1 - F(x) (i.e., the probability that X> x).
 The hazard function, h, is similarly defined as h(x) = f(x)/S(x), which
 can be interpreted as the conditional likelihood that X = x given that
 X > x (in our case, the likelihood of an event occurring at a particular
 time, given that it has not already occurred before that time). We have

 already stated that we assume the generative process for At is such that
 the realization of each non-null event can be treated as independent
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 given the events that transpired previously. We may thus note that the

 conditional likelihood for the ith event (denoted ai) transpiring at time
 -c(a ) will be equal to the hazard for ai at r(a ) (i.e., the likelihood that ai
 transpires at T(ai), given that it has not already transpired) multiplied by
 the survival functions for all potential events over the time interval from

 the previous event (a>i ) to the current event ai (i.e., the joint likelihood

 that none of the possible events transpired from T(ai-1) to r(ai)). The
 joint likelihood for the entire event history at some given time t will
 then be the product of each successive conditional likelihood, along
 with a final factor accounting for the gap between the time of the last
 observed event and the end of the observation period. For brevity of
 notation, let us denote the likelihood of At by p(At), allowing M to refer
 to the number of non-null events in At and Xa to refer to a covariate
 set associated with event a. We then posit that the likelihood for the
 relational event history must take the following form:

 M h(T(ai)ls(a1),r(a1),c(ai) Xa, Ar(a-i1))x ] ]
 p(At) = [laf' S(r(ai)-r(ai-l)ls(a'),r(a'),c(a'),Xa , Ar(ai-1))

 x [L2t) S(t-r(aM) l s(a'), r(a'), c(a'), Xa', At)] (1)
 ,.a'EA(At)

 Intuitively, equation (1) traces the history of At, incorporating
 both the likelihoods of events that did occur (the elements of At) and
 the likelihoods of the associated "nonevents" (actions that could have
 been taken in each instant but were not). Given this general form, we
 may then specify particular subfamilies by appropriate selection of h
 and S. One obvious choice in this regard is to assume that each po
 tential action has a constant hazard of occurrence given a particular
 prior event history (i.e., a piecewise constant latent hazard model). This
 amounts to the assumption that the waiting time from one event to the
 next is conditionally exponentially distributed, and hence we can posit
 some rate function X such that h(t) = A and S(t) = e-X(t-t') for an event
 transpiring at time t following a prior event at time t' < t. i, in turn, may

 be a function of sender, receiver, action type, and past action history, as
 well as exogenous covariates. A considerable virtue of this approach is
 that X may be flexibly employed to incorporate a wide range of endoge
 nous and exogenous influences; the corresponding challenge is then to
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 RELATIONAL EVENT FRAMEWORK 163

 identify rate functions that are theoretically appropriate. While many
 choices of X are possible, certain properties do suggest themselves as
 starting points; some of these are described in Section 2.2.

 In addition to features of the potential action, covariates, and past
 history, it seems reasonable in many settings to presume that X will de
 pend on some vector of unknown parameters, 0. To denote the piecewise
 constant rate function in this general case, we employ the abbreviated

 notation XaA,O = X(s(a), r(a), c(a), Xa, A,, 0). Under the piecewise con
 stant hazard model, we may now substitute the implied definitions
 of h and S (given above) into equation (1), thereby obtaining the
 likelihood

 p(At I 0) = FLrTt Rai Ar(ai-1)0 r1 exp(-Xa'A,(ai_j)0(r (ai)- (ai- )))
 )=1 Lii (XaiAt(a)6 a'EA(At(aj))

 x [H exp(-Xa1Ate(t - r(aM)))] (2)
 _a'EA(At)

 Where X incorporates unknown parameters, equation (2) may be used to
 estimate them (see Section 2.3). This is, however, contingent upon fully
 observed timing information. For data of the sort frequently available,
 this assumption is problematic: in many settings, all that can be accu
 rately obtained is the order in which events transpire. Before turning to
 the question of how X may be parameterized, then, we must first deter

 mine how the action model may be adapted to data for which timing
 information is more limited.

 2.1. Ordinal Data Likelihood

 Where At is fully known, the likelihood of equation (2) provides an
 adequate basis for subsequent inference (see Section 2.3). In general,
 however, this is not the case-while we may know the order in which
 events occur, we do not always have access to exact interevent times.
 This is especially true when working with transcript data (like that em
 ployed in Section 3), for which the exact timing associated with speech
 events may not have been recorded. If we assume that r is known only
 up to an order-preserving transformation, what can be said regarding
 the likelihood of At? Plainly, equation (2) cannot be used directly, as the
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 interevent time intervals (r(a1) - r(ai-1)) are not invariant under the
 appropriate class of transformations. Indeed, if events in A, can only
 be ordered, it follows that the associated likelihood can only be based
 on which of the various possible events appears next in the r-induced
 sequence. For the piecewise constant hazard model, it happens that just
 such a result can be obtained. We begin by noting that, under the model

 of equation (2), the waiting time for any given event ai following some
 event ai-1, conditional on the nonoccurrence of all other events, is ex

 ponentially distributed with parameter Xai Ar(ai-1)0. The probability that
 ai is the first of the possible events to occur is equivalent to the prob
 ability that the waiting time for ai is the minimum waiting time for all
 potential events; 1 thus, under the piecewise constant hazard model, the
 probability that as occurs first is equal to the probability that a ran

 dom variable W(ai, Ar(ai-I), 0) is equal to minaleA(A,(ai)) W(a', Ar(ai ,) 0)
 where W(a, At, 0) - Exp(XaA,O). This probability, in turn, is obtained
 via the following theorem:

 Theorem 1. Let XI,..., X, be independent, exponentially distributed
 random variables with rate parameters rq 1, .. ., nn. Then, Pr(xi =
 min{xl, . X., xn}) = ili / E=i 7

 Proof. Without loss of generality, let Y= {Xj: j 0 i} refer to the
 X variables other than Xi; for clarity of notation, we will relabel the
 elements of this set as Yl,..., Yn-i with associated rate parameters
 .1... . ., n -. By definition, then, Pr(xi = min{xl, . . ., x"}) = Pr(X1 <
 mint Yi, . .. , Yn1}). From the definition of the exponential density, this
 gives us

 Pr(Xi <min[ YI,..Yn- ID
 0o oo oo n-I1

 = j J.. f* ie.. ie-X (ft ne-qiYidyj dxi.
 O Xi xi ~~~j=l

 Note that since the Y variables depend only on the value of Xi, we may
 safely integrate them out, giving us

 1 Since we are assuming a continuous waiting time distribution, we may
 ignore the probability-zero case in which two events occur at precisely the same
 instant.
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 = f iiie-qiXie-Z= ?xidxi.

 Integrating over the range of Xi, we have

 00

 i?Eil1 e-(1i+57 n 0xi
 7ni + YJ=l NJ O

 which reduces simply to

 li
 ?Jj + E 7n-I

 Since, by construction, E21N = j=1 ilj - Ti, we may rewrite this
 expression as

 _ 7i

 In=1 nj
 which completes the proof.

 Theorem 1 provides us with a surprisingly simple result: the prob

 ability that a particular event ai will be the next in an event sequence
 (under the piecewise constant hazard model) is equal to the occurrence
 rate for ai, divided by the sum of the rates for all possible events that

 might occur (including ai itself). Since successive events are condition
 ally independent, it follows that the likelihood of At under temporally
 ordinal data is merely a product of multinomial likelihoods. Specifically,
 we have

 p(At I O) = VT [ a AT(aii)O (3)
 i=l La EA(AT(ad)) Ta-)

 (Note that, although the above is now a probability mass rather than
 a probability density, as in equation (2), we continue to refer to the

 likelihood of At generically by p(Aj).)
 Ironically, this expression is even simpler than that of equa

 tion (2). This simplicity is not without cost, however: in addition to
 the fact that information is lost in the conversion from ratio to ordinal
 scaling, the particular form of equation (3) allows X to be identified
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 only up to a constant factor. In practice, this is not a terribly onerous
 restriction, since we are generally interested in relative rates rather than
 absolute pace of interaction (though see Moody et al. [2005] for a de
 fense of the value of pacing information). However, it should be noted
 that this does affect extrapolative simulation, in that the average rate
 at which actions occur cannot be determined without additional infor
 mation. It should thus be emphasized that exact timing information
 should be used where available, although the relational event model can
 be usefully applied to data for which only order is known.

 2.2. Specification of the Rate Function

 While equations (2) and (3) provide expressions for the stochastic com
 ponent of the relational event model, the dynamic evolution of the event
 system itself is driven primarily by the rate function, A. As indicated
 above, we presume that X may in general depend upon sender, receiver,
 action type, past event history, and/or exogenous covariates, in addition
 to unknown parameters. Substantively, such dependence allows us to
 accomplish a number of modeling goals. First, it is desirable to be able to
 incorporate sender and receiver effects-that is, differential tendencies
 for certain persons or objects (or persons/objects with certain proper
 ties) to send or receive action. Second, it is important to be able to include
 individual or dyadic covariates (e.g., personal attributes, similarity, or
 physical proximity), which may impact the chance of an action from
 one entity to another. Third, the history of past action should impact
 future behavior, in accordance with known cognitive and behavioral
 principles. To capture such phenomena within a flexible, interpretable
 framework, we parameterize the rate function as

 X(s(a), r(a), c(a), Xa, At, 0) = exp [xo + OTu(s(a), r(a), c(a), Xa, At)],

 (4)
 where (as before) a is a hypothetical event, s, r, and c are the source, re
 ceiver, and action type functions (respectively), X is a covariate set, and
 At is the past history associated with some time point, t. We presume
 that 0 E ]RP is a parameter vector, which is fixed with respect to the
 evolution of the event system (although possibly uncertain). The func
 tion u: (S, k, C, X, A) -+ IRP is then a vector of sufficient statistics for
 the model, and Xo E ]R is a "pacing constant." In general XO gives the
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 RELATIONAL EVENT FRAMEWORK 167

 temporal scale of the relational event process, acting as the baseline
 with respect to which other parameters are defined. Under the ordinal
 data model, Xo is arbitrary (and hence may be taken to be equal to zero
 without loss of generality); we separate it from the 0 effects for this
 reason.

 Intuitively, u indexes the various influences that increase or de
 crease the relative rates of incidence across events. These effects are
 weighted by 0, such that each unit change in ui for a potential event
 multiplies its conditional relative rate by exp (0 i). In this respect, u is di
 rectly analogous to the elements of the objective/gratification functions
 of the dynamic network models of Snijders (1996, 2005), and to the suf
 ficient statistics invoked in the parameterization of exponential random
 graph (aka ERG or p*) (Wasserman and Robins 2005; Snijders et al.
 2006; Pattison and Robins 2002) and permutation/assignment (Butts
 2007a,b) models. As in the case of models proposed for social networks
 (and in the conditional dependence tradition launched by Besag [1974,
 1975]), appropriate selection of sufficient statistics allows us to specify
 the manner in which one system element depends on another. Here, this
 dependence is temporal in nature: the propensity of any given actor to
 direct action to a particular target will (in general) depend upon which
 actions he or she (or others) have taken in the past, along with exoge
 nous factors (such as personal attributes). These prior actions may be
 significant not only in their distribution (e.g., how many actions has ac
 tor i taken?) but also in their order or timing (e.g., did actor i greet actor

 j first, or vice versa?). Save for the constraints that u be finite for all ac
 tions, that it depend on past history in the manner indicated above, and
 that its elements be affinely independent (i.e., we cannot recreate ui from
 an affine combination of other u elements), there are few limits on what

 manner of effects may be explored. Since all effects speak directly to the
 tendency for a given sender to direct action toward a given receiver, they
 are in a sense closer to the "actor oriented" philosophy articulated by
 Snijders (2006) than the "tie oriented" philosophy with which he con
 strasts his approach. As the present family is more naturally parameter
 ized in terms of behavioral propensities than in terms of stochastically

 maximized utilities, however, a better term for the modeling philosophy
 employed here would be "behavior oriented." Depending on the agents
 (and behaviors) being modeled, estimated effects may or may not refer
 to hypothetical underlying preferences-following Mayhew (1980), we
 do not impose this interpretation ex ante.
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 Given the flexibility of the set of potential statistics, it can be
 hard to know how to begin specifying models for practical use-choice
 of u clearly determines the range of dynamic behavior to be examined,
 but there are many statistics that might be contemplated. Indeed, com
 parable developments in the network field have spawned a burgeoning
 literature on choice of sufficient statistics (e.g., Wasserman and Pattison
 [1996]; Pattison and Wasserman [1999]; Robins et al. [1999]; Pattison
 and Robins [2002]; Handcock [2003]; Snijders et al. [2006]; Butts [2006]),
 a broad implication of which is the importance of selecting statistics that
 are theoretically appropriate for the process under study (as opposed
 to the use of a uniform set of standard statistics for all purposes). With
 this in mind, we focus here upon an initial set of sufficient statistics
 with clear substantive utility for a particular problem of interest. This
 problem (as hinted in Section 1) is the analysis of interpersonal radio
 communication within the context of emergency situations such as the
 World Trade Center disaster. Although our discussion is thus anchored
 in a particular application, the statistics defined here can easily be em
 ployed in many other settings. Some of these broader applications will
 be mentioned in the discussion below.

 2.2.1. Fixed Effects
 It is well-known that the distribution of communicative acts within
 closed group settings tends to be highly unequal (Bales et al. 1951).
 While such inequality may be endogenous to the communication pro
 cess, it may also reflect exogenous properties of social actors to some
 degree (e.g., status characteristics [Smith-Lovin et al. 1986; Fisek et al.
 1991]). Within an emergency setting, there are additional reasons to
 suspect differences among actors in the base tendency to participate
 in interpersonal communication. Such differential participation may
 reflect unobserved heterogeneity in situational awareness, training, or
 institutional role, as well as differences in local context. For instance,
 responders whose location places them in imminent danger are un
 likely to spend long periods of time engaged in radio communica
 tion, relative to those whose locations afford them a greater degree of
 safety. To capture the impact of such factors when they cannot be mea
 sured directly, we propose to include fixed effects for participation in
 the relational event system. To parameterize such effects for a group
 of size N = SI = IT I communicants, we add N statistics of the form
 UFEm(a, At, X) = I(m E {s(a), r(a)}), where I is the standard indicator
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 function. The corresponding 0 parameters then represent logged rate
 multipliers for all events having the corresponding individuals as senders
 or receivers. Such parameters are akin to degree effects in dynamic net
 work models, and fulfill the same role as the expansiveness/popularity
 parameters of the well-known (static)pI model (Holland and Leinhardt
 1981).

 It should be noted that, for the ordinal model (or the exact timing
 model with So included), the likelihood will not identify all N fixed effect
 parameters. This may be easily resolved by fixing one parameter to 0,
 in which case the others should be interpreted as providing log rate

 multipliers relative to the reference actor. Other linear constraints (e.g.,
 requiring that the statistics sum to 0) may also be applied, if desired. We
 employ the former solution for the analyses employed here, treating the
 first individual in each group as the reference actor.

 2.2.2. Persistence
 Another basic mechanism that is easily captured through the relational
 event model is persistence, or the tendency of past contacts to become

 future contacts. In particular, let d(i, j, Ak) represent the accumulated
 volume of communication from actor i to actor j by time k, and let
 d(i, Ak)+ = El]l d(i, j, Ak) be the total outgoing communication vol
 ume of actor i. The persistence statistic is then defined by up(a, At,
 X) = d(s(a), r(a), At)/d+(s(a), At)-i.e., the fraction of the sender's
 prior outgoing communication volume that has been devoted to the
 receiver. Where the associated 0 parameter is positive, this effect pro
 duces a tendency for actors to preferentially direct action to those who
 have comprised the bulk of their past communication history. Such a
 phenomenon could emerge empirically from unobserved relational het
 erogeneity as well as from cognitive processes such as the enhanced
 availability to memory of frequent communication partners (Romney
 and Faust 1982; Freeman et al. 1987). More broadly, a positive per
 sistence parameter captures a tendency toward social "inertia," in a

 manner loosely analogous to the role played by a positive AR(1) term
 in an autoregressive time series process.

 While it is most natural to think of persistence as a positive
 sign effect, it is also possible to obtain negative persistence parameters.
 In this case, the model reflects a process of "partner switching," in

 which actors become less likely (ceteris paribus) to contact those who
 comprise a larger fraction of their past communication history. This
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 could be induced by differential availability of actors over time, as well
 as by search processes (such as information seeking behavior) which
 encourage the accumulation of a diverse array of contacts.

 2.2.3. Preferential Attachment
 In the midst of a turbulent environment, judgments regarding poten
 tial communication targets may be highly uncertain. When one can
 not be sure who is still able to respond, it is natural to utilize past
 communicative activity as a predictor of current availability: those who
 have been involved in past communication are more likely to be present
 and able to respond than those with no prior communicative activ
 ity. The phenomenon in which actors with a greater level of past ac
 tivity are more likely to be chosen as communication targets is an
 example of preferential attachment (Simon 1955; de Solla Price 1965;
 Barab'asi and Albert 1999), and is easily captured via a statistic of the
 form upA(a, At, X) = (d+(r(a), At) + d-(r(a), At))/[(>Zfi d+(j, At)) +

 (EISi d-(j, At))], defining d-(i, Ak) = Ej1l d(j, i, Ak) to be the total
 number of actions received by actor i. Where the associated parameter
 is positive, actors with more past communication tend to become more
 attractive targets, creating a positive feedback loop that tends to lead to
 the creation of high degree actors. By contrast, a negative attachment
 parameter reflects a tendency to seek out actors who have not had prior
 involvement with the communication network for example, due to a
 novelty seeking process. In this case, the attachment process will tend to
 suppress the formation of high-degree actors, leading (ceteris paribus)
 to a "flatter" indegree distribution.

 2.2.4. Participation Shifts
 A substantial influence on the structure of communication generally
 (and radio communication in particular) is the adherence of communi
 cants to conversational norms governing communicative acts (Goffman
 1967; Sacks et al. 1974; Wilson et al. 1984; Schegloff 1992). These norms
 include restrictions on the number of recognized speakers (Schegloff
 2000) and expectations of reciprocity in turn-taking (Wilson et al. 1984),
 as well as other constraints on attention and involvement that allow the
 interaction to be maintained over time (Goffman 1963b). In the context
 of radio communication using handheld devices, these norms are further
 strengthened by the intrinsic limitations of the communication technol
 ogy (e.g., the impossibility of mutually intelligible overlapping talk) as

This content downloaded from 
�������������130.209.6.61 on Fri, 19 Feb 2021 21:00:23 UTC�������������� 

All use subject to https://about.jstor.org/terms



 RELATIONAL EVENT FRAMEWORK 171

 well as organizationally imposed standard operating procedures (Auf
 der Heide 1989). Such procedures typically require that conversations
 be structured in terms of a sequence of call/response actions (i.e., turns)
 including an initial contact query, comprehension checks (and verifica
 tion thereof), and formal termination of the interaction (sign-off). While
 formal procedure is not always followed to the letter (especially in an
 emergency), trained users of a well-monitored channel typically show
 a communication pattern that is substantially more tightly organized
 than everyday speech.

 Given this, modeling of radio communication in disasters (or
 conversation more generally) requires a basic means of capturing the
 effect of conversational norms on communicative action. In important
 recent work, Gibson (2003, 2005) has proposed quantifying the local
 temporal dynamics of conversation by counting events known as partic
 ipation shifts (or "P-shifts"). Following Goffman (1981), Gibson (2003)
 partitions the participants in a conversation into the roles of speaker,
 target, and unaddressed recipient (i.e., third party). As the conversation
 unfolds, occupancy of these roles shifts; such shifts are governed by the
 norms of conversational interaction, and they are the basis for Gibson's
 analysis. Enumerating the possible shifts in dyadic communication (and
 allowing for the possibility of a special class of receivers who cannot
 themselves become senders), Gibson defines 13 distinct P-shifts that
 can occur during conversational interaction. He denotes these using a
 two-pair notation, in which the quartad ij - kl denotes the shift from an
 act in which i sends to j, to one in which k sends an act to 1. While Gib
 son relies on a combination of global incidence counts and permutation
 tests to examine P-shifts in his data, we can here integrate P-shifts into
 our more general framework via appropriate choice of sufficient statis
 tics. For this purpose, we must temporarily turn from Gibson's compact
 notational scheme to a more elaborate one which explicitly articulates
 the shift definitions in terms of the basic elements of the relational event

 model; in the text that follows, we will use Gibson's notation to refer
 to the specified shifts, and the event notation to formally define them.

 To begin, let a' denote the most recent (i.e., maximum r) event in At,
 let v denote the logical OR operator, let A denote logical AND, and
 let RI = R n S be the set of potential targets who may themselves be
 senders. Although every action must have some target, not every tar
 get need be an individual who can send actions of the same type; for
 instance, it may be useful to represent a radio broadcast to "anyone
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 listening" by a "generic" target that belongs to R but not to 1'. A simi
 lar approach may be taken for actions directed at inanimate targets (e.g.,
 speaking into a tape recorder). Where no targets are of this latter kind,
 then certain P-shifts (described below) cannot occur. Using these ba
 sic notions, we define a set of "matching" events, based on whether the
 sender or receiver of a matches the sender or receiver of a'. Enumerating
 over all four sender/receiver combinations, these are defined formally
 as SS _ s(a') = s(a), RR r(a') = r(a), SR _ s(a') = r(a), and RS
 r(a') = s(a) with respective negations SS, RR, SR, and RS. In order
 to establish boundary conditions, we must also define the "targeting"
 events T r(a) E iZ' and T' r(a') E 'Z' (negations T and T') and the
 compound event PS= SS V RR (i.e., the event that a P-shift occurs).
 The three "turn receiving" P-shifts identified by Gibson (2003)-AB
 BA, AB-BO, and AB-BY in his notation-can then be defined via the
 statistics

 UAB-BA(a, At, X) = I(PS/A T' A TA SRA RS), (5)

 uAB_Bo(a, At, X) = I(PSA T' A TA RS), and (6)

 UAB-BY(a, At, X) = I(PS/A T'A TA SR A RS) (7)

 respectively. All three of these P-shifts have in common the conditions
 that (1) the receiver of the initial event is a potential sender, and (2)
 the receiver of the initial event is also the sender of the subsequent
 event. As indicators, their respective statistics take a value of 1 when
 their associated conditions are met, otherwise taking a value of 0; thus,
 for instance, UAB-BA = 1 when a is a reciprocating event for a', and
 0 otherwise. Similarly, UAB_BO indicates a shift in which some actor
 A directs an event toward another actor, B, who in turn directs the
 next action toward a nonsending target. Finally, where the target of the
 second action is some actor Y other than A who is a potential sender, a
 shift of form AB-BY is said to occur. This is captured by the associated
 statistic UAB-BY, which like the others is a dichotomous indicator for its
 respective P-shift.

 The three "turn claiming" P-shifts (AO-XO, AO-XA, AO-XY) all
 involve scenarios in which the recipient of the first action is not a po
 tential sender, and have the respective statistics

 UAO-XO(a, At, X) = I(PSA T' A T) (8)
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 for the case in which the recipient of the second action is a nonsender,

 UAO-XA(a, At, X) = I(PSA T' A TA SR) (9)

 for the case in which the second action is directed to the initial sender,
 and

 uAO0xY(a, At, X) = I(PSA T' A TA SSA SR) (10)

 for the case in which the second action is between two entirely different
 actors (both being potential senders).

 Gibson also notes four "turn-usurping" P-shifts, which involve
 the interruption of a call/response pattern by a new speaker. These have
 statistics

 UABXO(a, At, X) = I(PSA T' A TA SSA RS), (11)

 uAB-XA(a, At, X) = I(PSA T'A TA SRA RS), (12)

 UAB-XB(a, At, X) = I(PSA T' A TA SSA RR), and (13)

 UAB-XY(a, At, X) = I(PSA T' A TA SSA SRA RSA RR), (14)

 with the four shifts being distinguished by whether the target of the
 second action is a nonsender (AB-XO), the originating sender (AB-XA),
 the original recipient (AB-XB), or a third potential sender (AB-XY).

 Finally, we have the three "turn continuing" shifts (AO-AY, AB
 AO, and AB-AY), in which the sender is preserved in each event.
 The first and second such shifts involve nonsenders as targets, either
 in the first or second event; the third involves a potential nonsend
 ing target. Formally, the statistics for these shifts are defined by the
 indicators

 UAoAy(a, At, X) = I(PSA T' A TA SS), (15)

 uAB_Ao(a, At, A) = I(PSA T' ATA ?S), and (16)

 uAB-AY(a, At, X) = I(PSA T' A TA SSA RR), (17)
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 which complete the set of possible P-shifts. (It should be noted that we
 could also create statistics for the "nonshift" action pairs AB-AB and
 AO-AO, although we will not do so here.)
 Introducing each of these statistics into a relational event model

 parameterizes the tendency for the system to encourage or discourage
 the corresponding P-shift. For instance, a large positive coefficient asso
 ciated with UAB-BA indicates a strong tendency toward local reciprocity
 in communication; a negative coefficient, by contrast, would signal a
 tendency by actors to avoid immediately responding to contacts (as
 might be expected with actions such as dominance threats (Chase 1980;
 Chase et al. 1998)). While it is in principle possible to use all statistics
 simultaneously, the fact that they are nearly affinely dependent may
 cause problems for parameter estimation. In such cases, it may be wise
 to remove one or more statistics, in effect adding them to the implied
 reference group otherwise occupied by "no shift" actions. Likewise, the
 seven statistics involving nonsending targets (i.e., actions containing T
 or T') are applicable only if such actions are permitted within the data
 set. For strictly dyadic interactions with R = S no such events are pos
 sible, and hence the relevant P-shift statistics are those corresponding
 to the six remaining forms.

 2.2.5. Recency
 While turn-taking (as defined above) is a purely local phenomenon,
 there are also cases in which recency of contact would be expected to
 have a more general impact on future communication. For instance,
 there is reason to expect more recent sources to be salient targets for
 outgoing communication, both due to mnemonic and contextual factors
 (e.g., repeated coordination demands stemming from an ongoing task).
 Where multiple conversing subgroups are required to share the same
 channel (real or virtual), we may also expect occasional interruptions
 of one conversation by another. In such cases, the interrupted subgroup
 may be forced to wait until the interrupting subgroup ceases convers
 ing, returning afterward to their ongoing call/response pattern. Such
 a process can be modeled within the present framework by a statistic

 such as uR(a, At, A) = p(s(a), r(a), A,)-', where p(i, j, A,) is j's re
 cency rank among i's in-neighborhood. Thus, if j is the last person to
 have called i, then p(i, j, At)-' = 1. This falls to 1/2 ifj is the second
 most recent person to call i, 1/3 if j is the third most recent person,
 etc. (To ensure that the behavior of p is well-defined, actors who do not
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 belong to i's in-neighborhood are considered to have rank oc.) Note
 that the use of recency rank relative to the potential sender (as opposed
 to recency rank over all communications, for example) is based on the
 "actor oriented" assumption (in the sense of Snijders [2006]) that the
 salient mnemonic context for a sending actor is his or her prior con
 tacts (rather than all radio traffic); this should be contrasted with the
 turn-taking recency of the AB-BA P-shift, which is based on the context
 of the conversation rather than the context of the sender's past history.
 Likewise, the use of ranks rather than an alternative such as number of
 intervening events is based on the assumption that mnemonic sorting is
 performed by "chunking" (Miller 1956) incoming communications by
 sender (making search difficulty scale with the number of intervening
 senders rather than the number of intervening events). Although this is
 employed here as a plausible and illustrative parameterization, a more
 extensive analysis could compare the performance of multiple parame
 terizations based on various cognitive processes. The ability to perform
 such comparisons is a useful feature of the proposed approach.

 Where the parameter associated with the recency statistic is posi
 tive, actors exhibit a tendency to preferentially call those who have most
 recently contacted them. By turns, a negative parameter value would
 indicate a tendency to avoid calling those with more recent incoming
 communications. Such an effect seems unlikely to emerge within a con
 text such as radio communications, but it might be observed for other
 types of relational events (again, dominance contests being an obvious
 example).

 2.2.6. Triadic Effects
 The last category of effects considered here consists of those arising
 from triadic forms. In contrast with those properties already consid
 ered (which are, at best, dyadic), triadic effects engender dependen
 cies that are far less local in nature (Frank and Strauss 1986; Strauss
 1986). The most famous of these effects is that related to transitive
 closure (Holland and Leinhardt 1971), which may be understood here
 as the tendency for the existence of one or more i, j two-paths to en
 hance or inhibit direct communication from i to j. The impact of the

 same two-paths on the corresponding j, i communications is naturally
 understood as a cyclicity effect, and it may be motivated by the no
 tion that the target of a brokered communication may be likely to by
 pass the broker when replying (thus forming a direct connection and
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 creating a cycle). Each of these effects may be parameterized via statistics

 of the form uoTp(a, At, X) = E-7hi min{d(s(a), h, At), d(h, r(a), At)}
 (counting outgoing two-paths relative to s(a)) and uITP(a, At, X) =

 ELl min{d(r(a), h, At), d(h, s(a), At)} (counting the corresponding in
 coming two-paths). The parameters associated with UITp and UOTP then
 simply indicate the strength of the tendency to form cycles/transitive
 closure, or to inhibit the same, depending on the sign of the parameter
 value.

 In addition to the "classic" two-path effects, it is also useful
 to consider the potential impact of shared partners on direct inter
 action (Snijders et al. 2006). For instance, two actors who both have
 contacted the same third parties may be more or less likely to con
 tact one another directly; this is referred to an outbound shared partner
 effect. Similarly, we can imagine an effect due to having been con
 tacted by the same third party, which would constitute an inbound
 shared partner effect. These effects are, respectively, indexed by the

 statistics uosp(a, At, A) = ERlJ minfd(s(a), h, At), d(r(a), h, At} and
 u1sp(a, At, N) = E2lJ min{d(h, s(a), At), d(h, r(a), At}. As with the
 two-path effects, the sign and magnitude of the parameters associated

 with these statistics indicate the extent to which such configurations are
 encouraged or inhibited via the dynamic process.

 While the above are basic variants, they obviously do not exhaust
 the possibilities for triadic statistics. For instance, a natural extension
 of the P-shift statistics introduced above would be to consider second
 order shifts-that is, sextads of the form ij - kl - mn, with each pair
 corresponding to the sender/receiver of an event within a three-event
 sequence. These second-order shifts would then provide a "local" family
 of triadic effects, much as the first-order shifts allow for the parameteri
 zation of local reciprocity. The ability to extend and empirically evaluate
 schemes such as Gibson's P-shifts using the relational event framework
 is one illustration of the utility of the general approach.

 2.3. Parameter Estimation

 Given a choice of sufficient statistics, either equation (2)-in the exact
 case-or equation (3)-in the ordinal case-defines the likelihood of
 At under the relational event model. Since both expressions are readily
 computable, there is in principle no difficulty in carrying out likelihood
 based inference for 0 given At. (Indeed, the relative ease of likelihood
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 computation for this model family dramatically reduces the difficulties
 frequently encountered with dynamic tie-based models such as those
 of Snijders (2005), or static ERGs (e.g., see Handcock [2003] for a de
 scription of some of these issues).) The most obvious tactic to employ
 in this regard is maximum likelihood estimation that is, identifying 0
 such that

 A

 0 = arg max p(At I 0) (18) 6

 using a variant of Newton-Rapheson, simulated annealing, or other
 heuristic optimization methods (see Acton [1990] for a number of ap
 proaches). Once 0 has been calculated, the inverse information matrix
 at the MLE can be employed to obtain approximate standard errors
 in the usual fashion. Alternately, fully Bayesian estimation of 0 can be
 performed by positing a prior distribution on 0 and maximizing and/or

 simulating draws from p(0 I At) oc p(At I O)p(O). Though we do not treat
 the issue in detail here, simulation of posterior draws for the relational
 event model is fairly straightforward using a Metropolis algorithm; see
 Gelman et al. (1995) for an overview of this approach.

 One computational challenge that does emerge is the need to cal
 culate the product of survival functions (or sum of rates, in the ordinal

 case) across all IA(At)I possible events at each iteration. Since this quan
 tity generally scales with ISI RI IC I, the number of elements involved
 can quickly get out of hand when the individual set sizes become large;
 even given a single action type, the complexity of this calculation will
 generally grow with the square of the number of actors. This problem
 is a (thinly disguised) version of the normalizing factor computation
 that makes estimation for ERGs difficult (see Wasserman and Robins
 [2005]). Although much less severe in our case than the ERG equiva
 lent, the computational cost of evaluating the normalizing factor can
 still become prohibitive for large problems. In this case, it is often feasi
 ble to replace the relevant quantity with a Monte Carlo estimate, based
 on explicit calculation of a limited number of events. For instance, let
 ax,..., a"m be drawn uniformly from A(At). We may then approximate
 the normalizing factor of equation (3) by the Monte Carlo quadrature

 , Xa'AtX,a,, IA(At )I m X (19) Y, E ~-a` A Xa"A,
 al m =
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 (e.g., see Kalos and Whitlock [1986]). Depending on the sufficient statis
 tics on which A depends, stratification of sender, receiver, and/or action
 type may be required to ensure convergence of the estimated likelihood.
 In particular, we should beware of any scheme that results in a fail
 ure to cover each sender, receiver, and action type (particularly where
 fixed effects are employed). Stratification can also reduce the variance
 of the estimator, which can be estimated by the appropriately scaled
 variance of the sampled rates. As a rule of thumb, the standard devi
 ation of the estimated normalizing factor should be small compared

 with both ?iai-I Xaj g and with the estimated normalizing factor itself.
 Where this condition is met for all i, the estimated likelihood will closely
 approximate the exact likelihood, and the resulting estimators should
 be well-behaved. Otherwise, it may be necessary to increase m and/or
 employ additional stratification so as to increase the precision of the
 estimated normalizing factor. Where this method also fails, importance
 sampling using the Geyer and Thompson (1992) framework (now fre
 quently used in the network modeling literature) provides yet another
 alternative. While this approach can be relatively labor-intensive to im
 plement (see Handcock et al. [2003] for an example), the added difficulty
 may be justified when working on very large data sets.

 3. SAMPLE APPLICATION: COMMUNICATION
 IN THE WORLD TRADE CENTER DISASTER

 To illustrate the use of the relational event framework, we here apply
 the ordinal data model to a subset of radio communication data from
 responders to the World Trade Center disaster obtained and coded by
 Butts et al. (2007). The World Trade Center disaster occurred on Septem
 ber 11, 2001, when two hijacked airliners were flown into the North
 and South Towers of the WTC complex. The resulting fires (aggravated
 by structural damage from the initial collisions) resulted in the col
 lapse of both buildings (as well as WTC 7), killing the remaining oc
 cupants. In the period following the initial plane impacts, a substantial
 response was mounted both by workers in the towers and by personnel
 at other affected sites (including Newark Airport, the Port Authority
 Trans-Hudson system, and Lincoln Tunnel). The data employed here
 (described in detail below) is derived from radio conversations within
 groups of responders at the WTC and other related sites; the portion
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 analyzed consists specifically of the sequences of communicative ac
 tions (i.e., transmissions) taken by responders within each of six groups
 during the event.

 In prior work, Butts and Petrescu-Prahova (2005), Petrescu
 Prahova and Butts (2005), and Butts et al. (2007) analyzed the
 time-aggregated communication structure using conventional network
 analytic methods. An important finding from these analyses was the
 dominance of the aggregate communication networks by a small num
 ber of highly central, "hub" nodes whose prominence could not be
 accounted for simply by organizational role. Such positions are of par
 ticular interest for understanding the emergence of coordination within
 groups during emergency situations, and predicting their incidence is im
 portant for problems such as communication system design (see Butts
 et al. [2007] for a discussion). On the basis of their aggregate analy
 ses (together with arguments from the prior literatures on networks
 and disasters), these authors suggest several possible mechanisms that
 could potentially account for the emergence of hub positions. First,
 there is the obvious possibility of unobserved heterogeneity within the
 responder population, leading directly to differences in communication
 frequency. Such heterogeneity could consist not only of differences in in
 dividual characteristics, but also differences in individual context within
 the event-since not all persons would be expected to have equal op
 portunity to communicate (e.g., depending on the safety of their local
 environments), it would not be surprising to observe some differences in
 overall communication rates. An alternative to heterogeneity would be
 preferential attachment based on airtime: responders with more prior
 communication may be expected to become more salient targets for
 other responders, leading to a feedback loop that amplifies small (pos
 sibly random) initial differences in communication rates. Yet another
 possibility is that hubs emerge from local biases in communication, such
 as a tendency toward persistence in partner selection, reciprocity, triadic
 effects, or adherence to conversational norms. As with preferential at
 tachment, such local mechanisms might operate alone or in conjunction
 with individual-level heterogeneity to promote hub formation.

 While conventional, cross-sectional analysis of aggregate com
 munication data is effective in identifying candidate mechanisms, it is
 not well-suited to discriminating among competing (or complementary)
 dynamic effects. The relational event framework, however, allows us to
 directly estimate the contribution of each putative mechanism to the
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 entire communication sequence and to select among competing models
 where appropriate. The analysis' presented here is intended to illustrate
 these advantages by investigating the conversational dynamics of WTC
 radio communications.

 3.1. Data

 The data employed here are derived from several documents belonging
 to a larger collection released by the Port Authority of New York and
 New Jersey and analyzed by Butts et al. (2007). Specifically, the raw ma
 terials for this study consist of radio communication transcripts from six
 groups of responders to the WTC disaster. Each transcript documents
 all voice communications associated with a single channel; each channel
 was used exclusively by a single group of responders.2 The six transcripts
 employed here encode (in increasing order of length) the Port Authority
 Trans-Hudson channel 27 (PATH Radio), Newark airport maintenance
 (Newark Maint), Newark airport police (Newark Police), New Jersey
 State Police Emergency Network channel 2 (NJSPEN 2), Newark air
 port command post/dispatch (Newark CPD), and World Trade Center
 police (WTC Police) channels. Lengths range from 70 to 481 eligible
 transmissions (see below), with the number of named communicants
 ranging from 24 to 46. The time period covered by each transcript be
 gins with the impact of the first plane into the North Tower at 8:46 AM,
 and ends at three hours and thirty-three minutes or (where relevant) un
 til the collapse of the structures containing the communicants (roughly
 1 hour and 15 minutes).

 3.1.1. Coding
 Each radio transcript contains a list of transmissions exchanged among
 responders, presented in chronological order. Some sender information
 is provided by the transcriber; depending on the specific transcript, this
 includes some or all of name, rank, gender, and organization. This in
 formation, together with transcript content (including communicants'
 use of names and callsigns, sequence information, and conversational

 examination of transcript content, as well as other supporting materials
 (including the 9/11 Commission report [National Commission on Terrorist Attacks

 Upon the United States 2004]) strongly suggests that the groups studied here lacked
 access to other radio channels. Thus, we treat the two as effectively equivalent for
 purposes of this study.
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 cues), was used by Butts et al. (2007) to assign a unique identifier to
 the sender and named target(s) of each transmission. Where one-to
 many communications were encountered, each was coded as a series of
 dyadic transmissions from the sender to each of the named recipients
 (in the order named). Transmissions with no clear target(s), and/or tar
 gets that were identified only as a group (e.g., "anyone," "all units") are
 outside the scope of person-to-person communications considered here
 and were removed from the data set. The resulting lists of ordered trans

 missions (one per transcript) comprised the event sets (At) employed in
 subsequent analyses. The sets of potential senders and receivers for each
 transcript (S, JZ) were taken to be the union of named communicants
 from the transcript in question, with r corresponding to the order of
 appearance for each transmission event. Finally, because we analyze
 only radio communications, we consider all relational events to be of
 the same type (i.e., IC I = 1).

 In addition to the relational event data itself, we consider the for
 mal status of individual responders as an illustrative covariate. Specif
 ically, Butts et al. (2007) attempted to identify individuals within each
 organization whose formal roles entailed coordinative responsibilities.
 As this was not available from archival sources, such status was in
 ferred from the content of the available transcripts. Butts et al. coded
 communicants as occupying institutionalized coordinator roles if their
 transcriber-assigned labels or within-transcript terms of address con
 tained one of the following words: "command," "desk," "operator,"
 "dispatch(er)," "manager," "control," and "base." Within the Newark
 Airport transcripts, the content of the communications suggested that
 actors were referring to a centralized Newark Airport command desk
 as simply "Newark Airport," so this individual was also assigned to
 institutionalized status.

 3.2. Model Parameterization

 To translate our substantive intuition into the terms of the relational
 event framework, we identify a series of statistics (and associated pa
 rameters) that formally capture the potential dynamics of the system.
 Section 2.2 discussed a number of such statistics in detail, and we do not
 recapitulate that discussion here. We do, however, identify the statistics
 that are used for the analyses at hand, along with the number of param
 eters in each independent set.
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 3.2.1. Individual-Level Heterogeneity
 As noted above, unobserved differences in context, training, or organi
 zational role may render some actors more likely than others to com
 municate during the event. To capture this, we introduce fixed effect
 parameters for each actor, with statistics defined per Section 2.2. 1. These
 statistics are entered as a block of dimension N - 1, where N is the num
 ber of actors; for purposes of model identification, the first parameter
 is set to 0. In subsequent discussion, this block of effects will be referred
 to by the initials "FE."

 3.2.2. Preferential Attachment
 In a chaotic and uncertain environment, responders overheard engag
 ing in radio communication may become attractive targets for other
 responders seeking someone with whom to communicate. As described
 in Section 2.2.3, this may lead to a phenomenon of preferential attach
 ment (wherein responders become relatively more likely to direct calls
 to those who have more airtime). Here, we parameterize this as a total
 communication volume effect, of the form given in Section 2.2.3. This
 yields a single statistic, whose associated parameter is positive when
 preferential attachment is present (or negative if a form of "personnel
 rotation" is taking place). In subsequent discussion, this effect will be
 referred to by the initials "PA."

 3.2.3. Triadic Effects
 As responders interact, they may become motivated to contact others
 due to their shared interactions with third parties; alternately, third par
 ties that efficiently route information may become effective substitutes
 for direct contact. To test for these possibilities, we employ the four triad

 effect statistics described in Section 2.2.6. These effects (globally iden
 tified by the initial "T") are denoted "ITP" for incoming two-paths,
 "OTP" for outgoing two-paths, "ISP" for incoming shared partners,
 and "OSP" for outgoing shared partners. Where the parameters asso
 ciated with these statistics are positive, stronger two-path/shared part
 ner connections promote contact among the endpoints; where negative,
 stronger connections inhibit interaction.

 3.2.4. Cognitive Effects
 In addition to preferential attachment, it is reasonable to presume that
 more basic perceptual and mnemonic effects will also be at work shaping
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 responder communications. Two examples that can be motivated in this
 manner are the persistence statistic of Section 2.2.2 (abbreviated as "P")
 and the recency statistic of Section 2.2.5 (abbreviated as "R"). Each
 statistic has a single associated parameter, respectively quantifying the
 tendency of responders to direct calls toward those whom they have
 called in the past, and the tendency of responders to direct calls toward
 those who have called them most recently. In the positive-parameter
 case, both may be thought of as arising from cognitive mechanisms,
 with the most cognitively available targets being those toward whom
 action has been recently directed and those from whom action has been
 most recently received. Negative parameter values, on the other hand,
 would suggest other mechanisms at work: the most obvious would be
 novelty-seeking, which could be reflective of the use of the responder
 network to search for persons or information within a rapidly changing
 task environment.

 3.2.5. Conversational Norms
 Finally, we note that radio conversation is a relatively structured form
 of talk, both for technical and institutional reasons. Strong local reci
 procity (i.e., call-response sequences) is to be expected, along with
 "hand-offs" in which one party transfers contact to another when leav
 ing a conversation. Such conversational norms should produce local de
 pendence of the form captured by the P-shift statistics of Section 2.2.4.
 Of those listed, we here employ effects for shifts of the form AB-BA
 (reciprocation), AB-AY and AB-XB (persistence of source or target),
 AB-BY ("handing off' of communication), and AB-XA (source "at
 traction"). All are denoted by their Gibson initials ("ABBA," "ABXB,"
 etc.), with the full set of five parameters noted by the initials "PS."
 The remaining possible shift AB-XY (signifying termination of a con
 versation) is omitted as a reference category (along with the implicit
 "nonshift" pattern AB-AB, which is extremely rare in this data set). As
 all potential targets are also potential senders for the systems considered
 here, the seven shifts involving nonsending targets are acpriori excluded.

 3.3. Software Implementation

 Due to the specialized algorithms required to compute the sufficient
 statistics for relational event models with nontrivial structure, fitting
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 relational event models generally requires special-purpose statistical
 software. Estimation for all models presented here was conducted via
 a dedicated library (relevent) written by the author for use with the R
 statistical computing environment (R Core Development Team 2007);
 portions of this library also make use of the sna library for network
 analysis (Butts 2007c). The relevent library is available from the author
 upon request.

 3.4. Model Selection

 We begin our investigation of the WTC data by fitting a range of models
 using the effects enumerated above. In each case, parameter estimates
 were obtained using maximum likelihood under the ordinal time model;
 the latter was employed due to the fact that exact temporal information
 was not available for this data set. Size descriptives for the six transcripts
 treated here are shown in the first two lines of Table 1, where N refers to

 the number of actors within the network, and M refers to the number of
 distinct communications recorded. (M is thus the most natural quantity
 measure for this data.)
 Proceeding from the first two rows, all subsequent entries within

 Table 1 consist of BIC scores (Wasserman 2000) arising from the

 TABLE 1
 Data Size and BIC Statistics for the Fitted Relational Event Models

 PATH Newark Newark NJSPEN Newark WTC
 Network Radio Maint Police 2 CPD Police
 N 28 25 24 26 46 35
 M 70 77 83 149 271 481
 Null 927.93 985.13 1048.05 1930.14 4138.33 6812.60
 P 755.99 702.57 786.26 1684.74 3796.23 5754.44
 R 659.36 521.08 650.49 1431.95 2946.52 4081.38
 T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
 PS 512.57 309.80 361.36 1115.52 2001.39 2493.83
 PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
 FE 920.27 902.58 1041.14 1381.78 3337.86 4308.54
 P+R+T+PS 517.00 331.57 379.95 1040.60 1955.18 2289.74
 P+R+T+PS+PA 520.64 333.54 379.57 1041.73 1946.23 2245.71
 P+R+T+PS+FE 607.69 419.13 470.36 1008.54 2009.70 2308.08
 P+R+T+PS+PA+FE 610.71 423.47 469.99 1011.26 2014.76 2313.65

This content downloaded from 
�������������130.209.6.61 on Fri, 19 Feb 2021 21:00:23 UTC�������������� 

All use subject to https://about.jstor.org/terms



 RELATIONAL EVENT FRAMEWORK 185

 indicated model/data combination. Models are listed by effects, with
 codes corresponding to fixed effects (FE), persistence (P), preferential
 attachment (PA), P-shifts (PS), recency (R), and triads (T) as described
 above. The null model (listed in the eponymous row) treats all events as
 equiprobable, and thus serves as a reference for the other models. The
 next block of models (represented by single terms) includes only one
 effect in each case and can thus be interpreted as providing evidence
 of marginal effects. Finally, the third block seeks to combine effects in
 a manner that facilitates the analysis of hub formation. For this pur
 pose, persistence, recency, P-shifts, and the triadic effects are taken as
 "controls," with the two major alternatives being preferential attach
 ment (PA) and fixed effects (FE). By investigating BIC scores across
 models, we can thus evaluate the extent to which one mechanism versus
 another appears to be providing a more parsimonious account of the
 data.

 Looking across the BIC values of Table 1, a number of patterns
 clearly emerge. The ifirst, and most striking, is the strong impact of
 local rules (as implemented via P-shifts) on structural dynamics: no
 preferred model omits the PS terms, and in three networks these effects
 alone generate the best-fitting model. The opposite pattern is exhibited
 by the triad statistics, which had very little success in explaining most
 of the data sets. The cumulative (P and PA) terms clearly do have some
 impact on network dynamics, but that impact is fairly weak compared

 with recency and P-shift effects; in neither case was either able to unseat
 the marginal R or PS models as the more favored option. As marginals,
 the fixed effect terms prove generally more powerful than the cumulative
 terms for the longer transcripts, though not for the shorter ones. Once
 the control terms are added, however, the BIC favors the addition of
 preferential attachment over fixed effects in all six networks (though
 the controls+PA model is itself approximately equal or inferior to the
 controls only model for four of six cases). This implies that much of
 the apparent impact of unobserved heterogeneity is in fact the result
 of cognitive effects and/or local rules, as suggested by Gibson (2003,
 2005). Preferential attachment effects may play at least some role in
 the communication dynamics, though they enter into the BIC-optimal

 model in only two of the six channels. In interpreting these results, it
 should be borne in mind that the BIC is well-known to be conservative
 as model selection index, exhibiting a strong tendency to favor smaller

 models (Wasserman 2000). As the FE terms add a very large number
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 FIGURE 1. Parameter estimates and approximate 95% confidence intervals, marginal
 models.

 of parameters to the model, they are heavily penalized by the BIC,
 requiring a much larger improvement in goodness-of-fit to achieve the
 same score as a single-parameter effect such as PA. Nevertheless, the fact
 that the FE terms are outshone by the PA effect (and/or the controls
 alone) suggests that latent heterogeneity is less critical to communication
 dynamics than endogenous effects, at least for the channels considered
 here. 3

 3.5. Parameter Estimates

 To get a better idea of the dynamics of communication at the WTC,
 we now turn to the estimated parameters for the relational event
 model. Figure 1 shows MLEs (and associated asymptotic 95 percent

 3 AlC-optimal models include FE terms only for the three largest networks;
 PA terms are included for NJSPEN 2. For the three smaller networks, the AIC and
 BIC agree except for PATH Radio, where the AlC-optimal model adds the R+P+T
 controls.
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 confidence intervals) for the marginal P-shift (PS-ABAY, PS-ABXB,
 PS-ABXA, PS-ABBY, and PS-ABBA), triadic (T-ISP, T-OSP, T-ITP,
 T-OTP), recency (R), persistence (P), and preferential attachment (PA)
 effects; although included in the same figure for comparison, each ef
 fect category was fit independently to each transcript.4 Consistent with
 Table 1, we observe reasonably strong and systematic marginal effects
 for the P-shifts (especially AB-BA), recency, persistence, and preferen
 tial attachment. All are positive where significant, suggesting marginal
 tendencies toward reciprocity, persistence in selection of communica
 tion targets, and preferential targeting of actors with higher levels of
 prior communication activity. Triadic effects, however, are more varied:
 significant effects are observed for only three out of the six transcripts,

 and little consistency is observed in strength or direction of effect. That
 said, the three shorter transcripts provide little information regarding
 triadic structure (as reflected in the large standard errors), leaving open
 the possibility of subtle effects beneath the detection threshold of the
 model. While we thus cannot rule out the possibility of consistent triadic
 biases in the WTC communication dynamics, the data do not provide
 evidence in support of this assertion.

 While the marginal effects shown in Figure 1 appear intuitive,
 they may also be misleading: Real social systems involve multiple, inter
 acting mechanisms, whose joint effects can be nonobvious. As Table 1
 indicates, the BIC-preferred models for all but the shortest transcripts
 incorporate multiple effects, which must be considered jointly in order
 to obtain realistic estimates. At the opposite extreme from Figure 1,
 Figure 2 once again shows parameter estimates for P-shift, triadic, re
 cency, persistence, and preferential attachment effects, this time from
 joint models in which all effects are included (fixed effects are entered but

 not shown). These estimates indeed paint a very different picture: Once
 heterogeneity in activity level is controlled for, the "cumulative" mech
 anism of preferential attachment either loses significance or reverses
 direction. As this suggests, attempts to infer preferential attachment ef
 fects without considering other factors may misconstrue its impact-in
 particular, individual-level heterogeneity and preferential attachment
 clearly substitute for one another to some extent.

 495% confidence intervals are based on an asymptotic z approximation,
 with standard errors derived from the inverse information matrix at the MLE. Some

 confidence intervals have been truncated for clarity of display.

This content downloaded from 
�������������130.209.6.61 on Fri, 19 Feb 2021 21:00:23 UTC�������������� 

All use subject to https://about.jstor.org/terms



 188 BUTTS

 PS-ABAY -

 PS-ABXB -

 PS-ABXA -
 .PS-ABBY........ , .......... , ...... ........................... ..................... , ..................... - .v .................. ,

 PS-ABBY ----

 PS-ABBA -
 .. .. ... .. ... .. ... .. .. .. .. .. .. .. .. . . .. .. *

 T-ISP -

 T-OSP --v

 T-ITP -,

 T-OTP -

 R-.x PATH Radio ..... .
 p _ O Newark Maint

 v Newark Police
 - NJSPEN 2 . . ----- --- --- --- --- ---

 PA -*- Newark CPD v
 .-4 -- W T C Police ................ ................. ..

 -20 -15 - 10 -5 0 5
 A
 0

 FIGURE 2. Parameter estimates and approximate 95% confidence intervals, joint models.

 Having made the point that marginals are not uniformly to be
 trusted here, we now turn to a more detailed examination of the models

 most favored by the BIC. Parameter estimates, approximate standard
 errors, and associated statistics for the six models are shown in Table 2.
 (Estimates for NJSPEN 2 also include FE terms, which are not shown
 here.) As noted above, the only effects that enter into the models for
 the three smallest transcripts are the P-shifts, which are generally dom
 inated by a strong reciprocity effect. As seen in Figure 1, substantial
 uncertainty exists regarding shift parameters for extremely rare tran
 sitions; although the exact values of these parameters are difficult to
 estimate from the limited data available, they are unlikely to be large
 given the infrequency of the events in question. (Occasional instances
 of shift parameters that are identical to within rounding error are simi
 larly due to the discreteness of the data.) Despite the limited data, we can
 see a strong and consistent reciprocity effect across the three channels:
 reciprocating communications in these transcripts have over 1600 times
 the hazard of communications that start new conversations, or which
 do not induce a P-shift. For the three longer transcripts, we continue
 to see a strong AB-BA effect, bolstered in two out of three cases by a
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 significant recency effect. Persistence and triad effects are not strongly
 consistent, although we do see significant impacts of these parameters
 within particular groups. Of more interest is the PA effect. Although
 present in only two channels, it is noteworthy that the effects on those
 channels are large and positive. Since these models also control for
 the other basic effects, our earlier intuition that the substitution effect
 observed is between the PA and FE terms would appear to be confirmed.
 More fundamentally, these results would seem to suggest that where
 preferential attachment exists, it is positive in effect-but its impact is
 substantially less fundamental than low-level factors such as turn-taking
 and recency.

 Clearly, the above analyses suggest that endogenous mecha
 nisms play a stronger role than responder-level heterogeneity in ac
 tivity levels (as captured by the fixed effect parameters) in determin
 ing communication network structure. Despite this, the FE terms do
 show significant variability in the joint models (not shown), and it
 bears investigating whether some covariate might account for such
 heterogeneity as is present. While this heterogeneity could stem from
 many sources-including differences in context, training, or cogni
 tive/emotional state-we will here consider only the possible influence
 of institutionalized coordinative roles. Intuitively, we may expect respon
 ders with such roles to act as hubs within the communication network,
 thus displaying higher levels of activity (net of other processes) than
 actors without such roles. On the other hand, demands for emergent
 coordination (Dynes 2003) may render such roles largely irrelevant dur
 ing the immediate aftermath of a high-consequence event. To assess
 this possibility, we compare fixed effect estimates under the joint model
 for responders holding institutionalized coordinative roles with those
 for other responders. Figure 3 shows boxplots for activity level effects
 by institutional status, for all six WTC networks. As the figure sug
 gests, the impact of institutionalized coordinative roles is weak at best:
 Although medians for the institutionalized coordinators are higher in
 five out of the six networks, the mean differences are not significant
 in any case. Pooled mean differences are similarly insignificant (z =
 -1.26, p = 0.21). Our dynamic analysis thus reinforces the findings
 of Petrescu-Prahova and Butts (2005), whose static analysis of WTC
 communications found evidence that centrality within responder radio
 communication networks was largely due to factors other than institu
 tional status.
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 FIGURE 3. Fixed effect parameter distribution by institutional status, joint models.

 4. CONCLUSION

 In this paper, we have introduced a stochastic model for intertempo
 ral behavioral data, based on a relational event formalism. Using the
 simplifying assumption of piecewise constant hazards, we are able to
 construct a fairly broad modeling framework that can be applied to
 data with either exact or ordinal timing information. A wide range
 of mechanisms can be evaluated within this framework, of which sev
 eral are illustrated here; once specified, parameters associated with the
 direction and strength of these effects can be readily estimated using
 maximum likelihood methods.

 As we have stressed, relational events are temporally local phe
 nomena, and thus represent the opposite end of the temporal contin
 uum from the (relatively) long-term structures that have formed the
 primary subject matter of classical network analysis (e.g., see Wasser
 man and Faust [1994]). Between these extremes lie temporally extensive
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 relationships that nevertheless change over time scales of interest; re
 lations of this kind are typically studied under the rubric of "network
 dynamics" (e.g., see Snijders [2005]; Robins and Pattison [2001]). While
 classical network analysis has sometimes been criticized for its implic
 itly static frame of reference, this arguably misses the point: a static
 orientation is appropriate when relations evolve at time scales that are
 long relative to the system of interest. The core problem in modeling
 such networks is that of capturing the configurations that arise from
 the concurrency of edges (a point that has been emphasized in the con
 text of diffusion by Morris and Kretzschmar [1995]). Concurrency is
 also a concern in network dynamics, but its role is primarily in explain
 ing the differential formation or dissolution of relationships (which are
 presumed to respond to their current relational environment). As one
 considers actions on increasingly fine temporal scales, concurrency at
 tenuates and then disappears altogether. In its place, sequence and timing
 rise to become the dominant concepts of phenomenal concern.
 From this vantage point, it is not surprising to observe that the

 modeling framework presented here looks quite different from related
 static (Wasserman and Robins 2005) and dynamic (Snijders 2005) net
 work approaches. Similarly, the challenges that are encountered in mod
 eling relational events are quite different from those encountered when
 modeling temporally extensive relationships. The ability to impose se
 quential dependence on all events, in particular, avoids the more com
 plex, simultaneous structures of dependence that emerge from realistic
 models with concurrent relationships. In this respect, a loose analogy
 may be made between the relation event/network modeling distinction
 and the distinction between modeling temporal and spatial autocorre
 lation. Temporal autocorrelation, while nontrivial, has proved a much
 easier target than its spatial counterpart. The reason for this is largely
 the same: Strict temporal ordering greatly reduces the range of plausi
 ble models and tends to lead to models with simpler structure. Just as
 we would not replace a spatial autocorrelation model with a temporal
 autocorrelation model because the latter is simpler, convenience is not
 a valid rationale for attempting to shoehorn a high-concurrency net
 work process into a relational event framework. That said, we should
 certainly make use of the latter's (relative) simplicity where appropriate,
 and it may be conjectured that scientific progress may be more rapid
 for phenomena that admit relational event structure than those that are
 temporally extensive.
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 To summarize our substantive findings, our analysis of six tran
 scripts from the World Trade Center disaster suggests that a com
 bination of cognitive/behavioral effects and local rules-not latent
 heterogeneity or preferential attachment-is the key driver of the dy
 namic behavior of WTC radio communication networks. As expected,
 strong reciprocity effects were observed for all six transcripts; triadic
 effects, on the other hand, did not appear to play a large role in driv
 ing communication dynamics. Although we cannot currently identify
 the source of that responder heterogeneity that is observed here, our
 analysis indicates that institutionalized coordinative roles have little
 explanatory power in this regard. This is consistent with the hypoth
 esis that emergency phase responder activity at the WTC was largely
 driven by idiosyncratic, situational factors that overwhelmed prior or
 ganization. On the other hand, the persistence of simple microdynamic
 rules such as conversational norms speaks strongly to the robustness
 of low-level behavior to substantial disruption. These observations are
 broadly consistent with the findings of the 9/11 Commission (Na
 tional Commission on Terrorist Attacks Upon the United States 2004)
 and with the conclusions reached by Butts et al. (2007) and Petrescu
 Prahova and Butts (2005) based on aggregate analyses, though it should
 be cautioned that alternative explanations may also exist. Additional
 analyses with a larger body of data should shed further light on this
 issue.

 In closing, we note that the "computational revolution" that
 swept through the social sciences during the 1980s and 1990s seems
 now to be enabling a new "statistical turn" in the modeling of complex
 social systems. Research in this vein does not retreat from the system
 atic treatment of dependence and interaction that has served as the
 hallmark of computational modeling over the past several decades, but
 it is likewise attentive to the need for such models to have a princi
 pled inferential foundation. By leveraging innovations in areas such
 as statistical simulation and exponential family theory, it is increas
 ingly possible for researchers to achieve both goals-a result that would
 surely have pleased early formal theorists such as Coleman (1964),

 who repeatedly stressed the importance of bringing together formal
 models and empirical data. The model family presented in this pa
 per is one attempt at such a union of theory and method, and it
 is hoped that this work will encourage others to undertake similar
 efforts.
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 APPENDIX: GLOSSARY OF SYMBOLS

 The following list contains all prominent functions or other quantities
 used within this paper, in order of introduction within the text; it may
 serve as a useful reference when reviewing formal developments within
 the paper.

 S Sender set
 1Z Receiver set
 C Action type set

 a = (i, j, k, t) Action, or relational event
 s(a) Sender of action a
 r(a) Receiver of action a
 c(a) Type of action a
 r(a) Time of action a
 ao Null action

 At= {ai : (ai) < t} History of all events occurring by time t
 A(At) Support set for events at time t, given the

 current event history
 f(x) PDF of random variable X at x
 F(x) CDF of random variable X at x
 S(x) Survival function for random variable X

 at x
 h(x) Hazard function for random variable X

 at x
 p(x) Likelihood of random variable X at x;

 assumed to be a PMF where X is discrete,
 or a PDF where X is continuous

 M Number of non-null events in At
 Xa Covariate set associated with event a

 0 Vector of real-valued parameters
 XaAtO = X(s(a), r(a), Hazard of event a given the event's pro

 c(a), Xa, At, 0) perties, the current event history, model
 parameters, and covariates

 Xo Baseline hazard (or global pacing con
 stant)

 u(s(a), r(a), c(a), Xa, At) The vector of sufficient statistics for the
 hazard of a at time t
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 I(x) The dichotomous indicator function for
 event x

 UFE. Fixed effect statistic for actor m
 d(i, j, Ak) The number of events sent from i toj by

 time k
 d(i, Ak) The number of events sent from i by time

 k
 up Persistence statistic

 UpA Preferential attachment statistic
 SS For a sequential action pair (a', a), the

 assertion s(a') = s(a)
 RR For a sequential action pair (a', a), the

 assertion r(a') = r(a)
 SR For a sequential action pair (a', a), the

 assertion s(a') = r(a)
 RS For a sequential action pair (a', a), the

 assertion r(a') = s(a)
 T, T' For a sequential action pair (a', a) and

 restricted receiver set R' = R n S, the re
 spective assertions r(a) E R', r(a) E 1Z'

 UAB-BA P-shift statistic of type AB-BA
 UAB_BO P-shift statistic of type AB-BO
 UAB-BY P-shift statistic of type AB-BY
 UAO-XO P-shift statistic of type AO-XO
 UAO-XA P-shift statistic of type AO-XA
 UAO-XY P-shift statistic of type AO-XY
 UAB-XO P-shift statistic of type AB-XO
 UAB-XA P-shift statistic of type AB-XA
 UAB-XB P-shift statistic of type AB-XB
 UAB-XY P-shift statistic of type AB-XY
 UAO-AY P-shift statistic of type AO-AY
 UAB_AO P-shift statistic of type AB-AO
 UAB-AY P-shift statistic of type AB-AY

 UR Recency statistic
 UoTp Outgoing two-path statistic
 UITp Incoming two-path statistic
 uosp Outgoing shared partner statistic
 U1Sp Incoming shared partner statistic

 0 The MLE of 0
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