Small Worlds

The Dynamics of Networks between
Order and Randomness

DUNGAN J. WATTS

PRINCETON UNIVERSITY PRESS

PRINCETON, NEW JERSEY




2

An QOverview of the Small-World Phenomenon

2.1 SOCIAL NETWORKS AND THE SMALL WORLD

The “small-world phenomenon” has long been an object of fascination
and anecdotal report. The experience of meeting a complete stranger
with whom we have apparently little in common and finding unexpect-
edly that we share a mutual acquaintance is one with which most of us
are familiar. More generally, most people have at least heard of the idea
that any two people, selected randomly from almost anywhere on the
planet, are “connected” via a chain of only a few intermediate acquain-
tances. Quisa, a character in John Guare’s play Six Degrees of Separation
(1990), famously claims that

Everybody on this planet is separated by only six other people. Six
degrees of separation. Between us and everybody else on this planet.
The president of the United States. A gondolier in Venice... . It’s
not just the big names. It’s anyone. A native in a rain forest. A Tierra
del Fuegan. An Eskimo. I am bound to everyone on this planet by
a trail of six people. It’s a profound thought. .. . How every person
is a new door, opening up into other worlds.

“Six degrees” is now firmly embedded in folklore, embracing everyone
from Kevin Bacon to Monica Lewinsky (Kirby and Sahre 1998). As a
result, the idea can be hard to take seriously. And yet, whatever the
precise number, it seems that human social systems really are constructed
in a fashion quite unlike that of physical systems, in that they seem
to violate what is known as fransitivity of distances. In physical systems
(which we generally visualise in no more than a three-dimensional space)
all lengths between points, objects, or subsystems are related to each
other by the triangle inequality which states that if three points (a, b,
and c¢) are anywhere in the same space, then they can be connected via
the three sides of a triangle, and the lengths of those sides must obey
the inequality d(a, ¢) < d(a, b) + d(b, c). It seems that this need not be
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true of social systems, because it is quite possible for person A to be
well acquainted with both person B and person C, yet for B and C to
be not even remotely familiar with each other. This is a normal part of
life, as each of us belongs not to a single group of acquaintances but
to many, within each of which everyone pretty much knows everyone
else but between which little interaction occurs. Common as it is, this
feature of interpersonal relationships has much to do with everyone in
the world’s being somehow “close” to everyone else, no matter how far
away intuition would suggest they are.

2.1.1 A Brief History of the Small World
Theoretical Work

Research specific to the small-world phenomenon did not commence un-
til the 1960s with the formulation and initial mathematical investigation
of the problem by Manfred Kochen and Ithiel de Sola Pool (Pool and
Kochen 1978). These authors made substantive progress on the prob-
lem, estimating both the average number of acquaintances that people
possess and the probability of two randomly selected members of a s0Ci-
ety being connected by a chain of acquaintances consisting of one or two
intermediaries. They developed these approximations under a varicty of
assumnptions about the level of social structure and stratification present
in the population and concluded (speculatively) that even quite struc-
tured populations would have acquaintance chains whose characteristic
path lengths are not much longer than those of completely unstructured
populations (where the probability of A knowing C, given that A4 knows
B, is independent of whether or not B knows C). For a population about
that of the United States and an estimated average number of acquain-
tances per person of about a thousand, Pool and Kochen estimated that
any member of the population could be connected to any other with a
chain of associates consisting of at most two intermediaries (hence three
degrees of separation).!

The study of distances in social networks, however, had begun over
twenty-five years before the publication of Poo! and Kochen’s work, with
Anatol Rapoport and his colleagues at the University of Chicago. In a
series of papers in the 1950s and 1960s, published in the Bulletin of
Mathematical Biophysics, Rapoport and colleagues established the the-
ory of random-biased nets, which describes the statistics of a disease
spreading through populations with varying degrees of structure. Ini-
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tially, Solomonoff and Rapoport (1951) developed the idea of disper-
sion in a randomly connected network, in which every element was as-
sumed to have the same number of connections (k). Based on these
assumptions—the independence of the connections and the regularity of
the nodes—they derived approximate formulae for the expected frac-
tion (n) of the population to be reached eventually from a small, initial
starting set. If a fraction P{0) « 1 of the population is infected initially,
then (1 — P(0)) is initially uninfected. A consequence of the indepen-
dence condition is that the disease spreads exponentially, infecting P(¢)
new members at each time step, where

—1

P(t) = (1 — ZP(:‘))(I — e kPU-), 2.1
f=0

In the limit of large ¢, Rapoport determined the following expression for

the total infected fraction n:

n=1—(1-P(0))e ", (2.2)

Several advances in realism have been made since upon this approxi-
mation, most notable of which are

1. The restriction to a finite subpopulation from which the k acquain-
tances can be chosen and a corresponding sirong overlap of friend-
ship circles (Rapport 1953a, 1953b).

2. The introduction of structural biases, specifically, homophily (the
tendency to associate with people “like” yourself), symmetry of
edges (which implies undirected instead of directed edges), and
triad closure (the tendency of one’s acquaintances to also be
acquainted with each other; Foster et al. 1963).

3. Social differentiation of a population into heterogeneous subgroups
(Skvoretz 1989).

In later work Rapoport (1957) accounted for the fact that, in a real
network, each infected person may have contact with k others, but some
of these will already have been infected, so that the effective number of
connections per member ¢ steps away from the origin of the disease is
actually «(¢} < k, for all # > 0, and is no longer a constant. Fararo and
Sunshine (1964) and Skvoretz (1985) argued for a constant x(¢) = k,
but one that accounts for structural biases, yielding the expression (from
Skvoretz 1989)

P(t) = (1 — E P(E)) (1 — e, (2.3)
i=0
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where, in the special case of undirected ties,
k—1—2(k—1)(1—(1-2)
R N T

k—1, 7=0

in which

¢ ={,(1—gS)is the “triad-closure bias”

{, = the triad-closure bias for “strong ties”

£, = the triad-closure bias for “weak ties”

§ = (1 - ({,/¢s)) is a measure of the “strength of weak ties”
g = the probability of a connection being weak.

Note that the above expression requires a distinction between “strong”
and “weak” ties, where the strength of a tie is determined not by some¢
inherent feature of the tie itself, but by the structure of the surround-
ing network. Specifically, Granovetter (who introduced the idea) defined
strength as follows:

Consider, now, any two arbitrarily selected individuals—call them
A and B—and the set, S=C, D, E, ..., of all persons with ties to
either or both of them. The hypothesis which enables us to relate
dyadic ties to larger structures is: the stronger the tie between A
and B, the larger the proportion of individuals in S to whom they
will both be tied, that is, connected by a weak or strong tie. This
overlap in their friendship circles is predicted to be least when their
tie is absent, most when it is strong and intermediate when it is
weak. (1973, p. 1362)

In a later article (1983), Granovetter stresses that weak ties are, in
fact, more significant in a social network than their strong counterparts:

The argument asserts that our acquaintances (“weak ties”) are less
likely to be socially involved with one another than are our close
friends (“strong ties”)....

The overall social structural picture suggested by this argument
can be seen by considering the situation of some arbitrarily selected
individual—call him or her “Ego.” Ego will have a collection of
close-knit friends, most of whom are in touch with one another—a
densely knit “clump” of social structure. In addition, Ego will have a
collection of acquaintances, few of whom know one another. Each
of these acquaintances, however, is likely to have close friends in
his or her own right and therefore to be enmeshed in a closely knit
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clump of social structure, but one different from Ego’s. The weak tie
between Ego and his or her acquaintance, therefore, becomes not
merely a trivial acquaintance tie, but rather a crucial bridge between
the two densely knit clumps of close friends. To the extent that the
assertion of the previous paragraph is correct, these clumps would
not, in fact, be connected to one another at all were it not for the
existence of weak ties. (p. 203)

The probability (g) that a tie is weak corresponds to the likelihood that
two connected vertices will have weakly overlapping friendship circles,
and § quantifies how much less likely a weak tie is to complete a triad
than a strong tie. Hence § is a measure of how significant a role the
weak ties will play. The importance of the “strength of weak ties” idea
was reinforced by Skvoretz and Fararo (Skvoretz 1989), who showed
that “the stronger the weak ties in a population (in two senses, weak tie
triads being less likely to close and weak ties being proportionately more
frequent), the closer is a randomly chosen starter to all others.”

Exactly how this works, and how important it is, is a major concern
in this book. Closely related to the strength of ties and triadic closure
is the idea of clustering, which has also been an issue of concern to re-
searchers in social networks and has significant connections to the small-
world problem. The idea of networks being divisible into cooperative
subgroups that do not cooperate with each other was first formulated
by Davis (1967), but the idea that neighbourhoods could be more or
less densely connected was not quantified until slightly later by Barnes
(1969}, who defined density at a network element v as the proportion of
all possible connections in v’s immediate neighbourhood (defined by v
and those elements to which v is connected directly) that actually exist.
A very similar notion of density, termed clustering, is defined later in this
chapter?. Barnes also discussed some qualitatively different networks for
the parameters n = 100, & = 10, observing that they have different lo-
cal densities and that the typical separation of network elements appears
to increase with increasing density. Whilst this analysis touched on the
idea that the local properties of a network (like density) can determine
its global properties, the first systematic attempt to relate the two scales
appears to have been the development of the concept of structural egi-
valance and the technique of block modelling. According to Lorrain and
White (1971), “a is structurally equivalent to b if a relates to every ob-
ject x of [a category] C in exactly the same way as b does. From the
point of view of the logic of the structure, then @ and b are absolutely
equivalent, they are substitutable.”
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Hence clustering and structural equivalence capture much of the same
information about “who knows whom” at a local level, at least in the re-
stricted case in which only one kind of social relation is considered. Block
modelling (White et al. 1976) then considers networks as composed of
blocks of structurally equivalent elements and represents the graph in
terms of the relationships between these blocks. This is analogous to the
amalgamation of Barnes’s clusters connected by Granovetter’s weak ties
as a means of constructing a global view of the network whilst retaining
some knowledge of the local structure. It is different from the work of
the biased-net theorists because, instead of considering the characteris-
tics of pathways though networks, it looks directly at the knirtedness of
networks at different scales.

A final area of research in social networks that relates closely to the
work presented here is that concerning the dimension and geometry of
the space in which social networks are presumed to exist. Many ap-
[ proaches to this question have been devised, but almost all of them fall
!‘ under the rubric of multidimensional scaling. This term refers to a loose
| bundle of techniques developed by many researchers across several dis-
5‘ ciplines and decades, but all are based on more or less the same idea,
:‘ which is basically the following.
| * A population is assumed to exist in some finite (but possibly large)
dimensional “social space,” where the coordinates (x;, x,, ..., x,,) of
each member represent quantitative measures of a set of characteristics,
which are presumably sufficient to identify each member of the popula-
tion uniquely. These coordinates, however, are unknown to the observer,
as is the dimension of the space. What the observer does know is the
distances (8; ;) between each pair (i, j) of members, where distance is
defined in some manner that is problem-specific but is often related to
frequency of interaction or some assessment of similarity, generated by
either the observer or the members themselves. The problem then is to
reconstruct the space by choosing coordinates in a self-consistent man-
ner such that the known distances are related to the coordinates by a
particular choice of metric. Basically, it is at this point that the methods
start to differ.

The group of methods generally known as metric methods (Chapter 4
of Davidson 1983) utilise a standard Euclidean metric, hence

8 ;= [g(xm - xjd)2:| , (2.4)
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whereas an alternate group of methods known as nonmetric methods
{Chapter 5 of Davidson 1983) utilise a variant of Equation 2.4

8 ;= f([;(xfd - xjd)z]%)’ (2.5)

where f is some monotone function (that is, d;; < dyy = f(dy) <
f(dy;))- In fact, “nonmetric” is something of a misnomer, because Equa-
tion 2.5 is every bit as much a metric as Equation 2.4; it is just not the
Euclidean metric. It turns out that this confusion between nonmetric and
non-Euclidean is widespread in this particular part of the study of social
networks, For instance, Barnett (1989) claims that non-Euclidean geom-
etry is necessary to describe social networks precisely. Pool and Kochen
also believed this, asserting that the transitivity of a Euclidean space is
violated in social networks where Person 4 may be very close to both
B and C and therefore likely to know them both, but B and C may be
very far from each other (Pool and Kochen 1978). The conclusion is that
if this basic tenet of a Euclidean space is violated, then, necessarily, the
space in which social networks exist must be non-Euclidean. This is ac-
tually a misunderstanding about which more will be said in Section 2.1.2.

For the moment, it is important to realise only that multidimensional
scaling is simply a process designed to reconstruct the space in which
the system is presumed to exist, thus both generating a set of mean-
ingful coordinates, with which to distinguish population members, and
providing a visual representation of the data that enables the observer to
gain more insight into the relationships between members than would be
possible by staring at a large matrix of numbers. Therefore, in applying
to the data whichever particular algorithm is chosen, it is to be hoped
that only a few dimensions will be sufficient to embed the data within an
acceptable degree of error. Obviously, if A, ; is an # x # matrix contain-
ing the intermember distance information, it is always possible to embed
the network in an n-dimensional space. However, for n > 3, this isn’t
going to be much help in visualising the data relationships expressed in
the matrix, and from another perspective, there is almost no point in do-
ing it at all (for any n) because the resulting relationships between the
coordinates will be no less impenetrable than the original distance ma-
trix. Hence there is a substantial trade-off between the goodness of fit of
the embedding and its dimension, which should almost always be kept
to less than four. This then raises another thicket of issues for the data
analyst, but these are not relevant here. See Davidson (1983) and R. N.




18 CHAPTER 2

Shepard and Nerlove (1972) for an overview of these obstacles and the
methods attempted to surmount them.

The theory of social networks, then, has proceeded along four basically
distinct, but interrelated, strands:

1. The statistical analysis of pathways through networks with varying
degrees of local structure.

2. The qualitative description of the structure of networks in terms of
local (e.g., clustering) and nonlocal (e.g., weak ties) features.

3. The renormalisation of networks, viewed as meta-networks of
highly clustered or equivalent subnetworks.

4. The embedding of networks into (hopefully low-dimensional )}
spaces where the coordinates are readily interpretable and rela-
tionships between members can be more easily visualised.

In tandem with (and frequently driving) this theoretical development
has been the development of empirical techniques that attempt to probe
the structure of real social networks directly. Once again, the small world
did not start turning in this field of endeavour until the late 1960s.

Empirical Work

The first empirical work was conducted at about the same time as Pool
and Kochen were developing their theoretical ideas, by the psychologist
Stanley Milgram. Although principally renowned for his remarkable and
disturbing work on the apparent submission of human ethical values to
authority (Milgram 1969), Milgram also conducted a highly innovative
test of the small-world hypothesis (Milgram 1967). In this experiment,
Milgram sent a number of packets to agreeable “sources” in Nebraska
and Kansas, with instructions to deliver these packets to one of two spe-
cific “target” persons in Massachusetts. The targets were named and de-
scribed in terms of approximate location, profession, and demography,
but the sources were only allowed to send the packets directly to some-
one they knew by first name. The object was to get the packets from
source to target with as few of these “first-name-basis links” as possible.
Hence each link in the chain was required to think hard about which of
their acquaintances would be most likely to know the target person or
at least be “closer” to them: demographically, geographically, personally,
or professionally. Also, each link was supposed to record, in the packet,
details about themselves corresponding to those provided about the tar-
get, enabling the experimenters to track the progress of the packet and
the demographic nature of chain along which it passed.

I
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The upshot of all this was that Milgram determined that a median of
about five intermediaries was all that was required to get such a letter
across the intervening expanse of geography and socicty. Whether this
number is, in reality, too low or too high is a matier of debate. On the
one hand it would seem unlikely that, at every step, the sender would
pick the optimal person to send it to (and they could only pick one), and
that this effect would tend to make the chains longer than they needed to
be. On the other hand, many of the chains were never completed because
of apathy on the part of the participants, and, as longer chains are more
likely to terminate than shorter ones, the result might well have been sys-
tematically biased in favour of lower numbers. White (1970) proposed
a model to account for this effect, which yielded a revised estimate
of about seven intermediaries. In any event, Milgram seemed to have
demonstrated that whatever the precise number was, it wasn’t very big,
compared with the overall magnitude of the system (on the order of the
population of the United States, which was about 200 million in 1967).
A second study by Milgram (Korte and Milgram 1970) used essentially
the same method to examine the length of acquaintance chains between
whites in Los Angeles and a mixed white-black target population in New
York and found similar statistics.

Of course, the study of social networks and their use as a tool for ex-
amining the structure of societies already had a considerable history by
the time Milgram did his initial experiment (see Mitchell 1969 for a re-
view of the field at the end of the 1960s), but none of this work had
looked at the question of path length in the same light as had Milgram.
It also seems that very little work of this nature and scale has occurred
since, even though Milgram’s results did (and still do) spur consider-
able interest. Perhaps the work of Rapoport (Foster et al. 1963) is clos-
est to this, in that he measures the average fraction of a population of
students in a junior high school that is reached as a function of num-
ber of intermediaries. Even here, though, the system involved is much
smaller, and the emphasis is upon justifying parameters for a network
model rather than direct experimental verification of the small-world
phenomenon.

In fact, it seems that more empirical effort has been devoted to the
lower-level question (originally posed by Pool and Kochen 1978) of the
number of acquaintances that the typical person possesses. Efforts in this
department have been made by Freeman and Thompson (1989}, who
use a variant of Pool’s original “telephone book” method,® and Bernard
et al. (1989), who use the 1985 Mexico City earthquake victims as a
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sample subpopulation to determine the acquaintance volume of residents
of Mexico City. This turns out to be a difficult exercise, and it seems
unlikely that even if such a number and its variance could be convincingly
determined for any given definition of acquaintance, that it would play
nearly so as important a role in the understanding of networks as a
comparable advance in the understanding of network structure.

2.1.2 Difficulties with the Real World
Theoretical

Although the researchers surveyed in Section 2.1.1 did make signifi-
cant gains on the issue of the effective size of social networks, their
progress was hampered by a number of difficulties that arose from both
the questions they chose to ask and the methodologies they used to seek
answers. The results of Pool and Kochen are highly suggestive of the
small-world property’s holding true in real societies. But although their
results are not highly sensitive to the estimation of the average number
of acquaintances,’ they are highly sensitive both to the assumptions about
conditional probability of acquaintanceship and to the large-scale struc-
ture of the population, which may dictate different rules of conditional
probability in different parts of the population. A more recent article
by Kochen (1989b) reports little progress on this essential theoretical
difficulty. It turns out that this is a problem faced by all theoreticians
who find themselves exploring systems that operate in the intermedi-
ate regime between order and randomness. The problem arises in many
fields, notably fluid mechanics and the dynamics of coupled, nonlinear
oscillators (see Chapter 9), but in terms of social networks, the only net-
works whose statistical properties are analytically tractable are those that
are either (1) completely ordered (for instance, a d-dimensional, hyper-
cubic lattice), or (2) completely random (such as Rapoport’s random
webs).

Although these cases are at opposite extremes of the structural spec-
trum, they both share the essential characteristic that their local struc-
ture mirrors (either exactly or statistically) their global structure, and
hence analysis based on strictly local knowledge is sufficient to capture
the statistics of the entire network. That is, in an important sense, they
“look™ the same everywhere.

Unfortunately, real social systems appear to be firmly in between these
extremes, and, to make matters worse, it is not even known where on
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the spectrum they lic. What does seem to be true is that, if any theoret-
ical explanation is to capture the important features of social networks,
then it must find some way of encapsulating elements of both order and
randomness, thus accounting for the appearance of structure at different
scales. Much of the work surveyed above has grappled with this problem
in creative and insightful ways, but three central issues appear to remain
open:

1. Social networks exhibit structural characteristics that arc inherently
nonlocal (Granovetter’s “bridges™), and so no purely local analysis
can predict their global statistical features,

2. Analytical difficulties increase with the size of the network, and al-
most none of the work has been tested for large population size
(n) with sparse connectivity under any but the most restrictive
conditions.

3. It is unknown where on the structural spectrum real social networks
lie, but no treatment has been given to the properties of continuous
families of networks, whose structural properties vary all the way
from one extreme to the other, with the intention of determining
the location and nature of any transitions that occur in between.

Adding to the confusion is the difficulty of determining which kind
of space a network exists in and the appropriate metric with which to
measure lengths. The root of this difficulty appears to be that networks
are frequently defined in the sociological literature on the basis of (at
least) two relations: (1) how “far” each pair of vertices is from each
other in the (unknown) metric of the (unknown) “social space,” and
(2) whether or not they are connected and (perhaps) how strongly.

The first relation turns out to be the problematic one because if one
takes any single measure of “social distance,” such as frequency of inter-
action, overlap of interests, or common characteristics, ambiguities in-
evitably arise, and the resulting “distances” will appear to violate the tri-
angle inequality. It is false, however, to declare the corresponding space
non-BEuclidean. In fact, the violation of the triangle inequality (if it isn’t
just due to faulty data) is symptomatic of a far more general breakdown
in the geometry of a space, because it violates one of the fundamen-
tal notions not just of Euclidean distance, but of distance itself, The
reason for this is that the triangle inequality is one of four basic proper-
ties of a class of spaces known as metric spaces (Munkres 1975). This is
an extremely general class of topological space that formalizes the idea
of distance (that is, a mefric) and that includes any sensible notion of
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distance. Hence if the measured “distances” in some network are not
consistent with the triangle inequality, then either (1) the criteria used
to measure distance are mistaken (the data are somehow incomplete or
in error), or (2) the space is not a metric space, and so the concept of
distance is meaningless in the first place.

In either case the result is that not much can be done to interpret the
measured distances as meaningful without performing some arbitrary
(and probably meaningiess) transformation on them (such as adding a
large constant to all distances or taking logarithms) until they do satisfy
the requirements of a legitimate metric. Such manipulations, however,
do not so much help the data as reveal their inherent flaws and suggest
cither a new method of measuring social distance or a different approach
to the probiem altogether.

The most likely source of the problem is the difficulty inherent in
measuring how close or far apart people are, not in a network, but in
the more general sense implied by the idea of a social space. As soon
as one tries to grapple with this issue, it immediately reveals itself to
be slippery both theoretically (what does “social distance” mean and
what are its most important contributors?) and empirically (even if you
knew what it was, how would you go about measuring it?). Even in the
best-case scenario, it seems that whatever metric of length is chosen,
it will almost certainly not capture all the features that are relevant to
relationships between people. It is just as likely, however, that such a
measure could even be mulivalued, as social distance is at least partly a
matter of perspective.

In the case of a network, the issue becomes still murkier, because
distance can also be defined in terms of the network connections them-
selves, which may be a function of the underlying space but almost cer-
tainly not one that is known. If the network distance and the metric
distance do not agree, then the analyst is once again faced with a choice
between arbitrary manipulations of the data and ignoring them outright,
Because the methodological basis of measuring distances in the net-
work sense, solely in terms of who is connected to whom, rests on much
firmer ground, both theoretically and empirically, network distance will
be treated here as the sole measure of distance, at which point all talk
of either non-Euclidean or nonmetric spaces instantly disappears. A net-
work does not necessarily exist in any particular space at all, but as all
network distances must certainly conform to the triangle inequality, then
(if one insists on thinking in terms of Euclidean spaces) an embedding
is guaranteed by an algorithm that is described briefly in Section 2.2.3.
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On the empirical side of the same problem, the principal stumbling block
seems to have been the practical difficulties associated with obtaining
and representing sufficiently detailed relationship data for large, sparse
networks. Milgram’s methodology (sometimes referred to as “the small-
world method”) was imaginative and original and did serve to illuminate
some interesting characteristics of what might be termed a “random-
biased walk” in a network: random, because senders did not have suffi-
cient information to know which of their acquaintances was optimal, and
biased, because some attempt at optimality was made. Unfortunately it
is difficult to generalise results such as these beyond the scope of the
specific study, and so it is hard to tell much about the overall qualitative
structure of the network.

Conversely, attempts to reconstruct network connectivity in a broader
sense have been forced to concentrate on small systems in which it is
practicable to map every single connection (see, for example, Doreian
1974), at which point there is little of the intermediate ground between
the local and the global scales in which the interesting small-world phe-
nomena occur.’

Finally, the methods used to assess actual network parameters, such
as the average number of friends per person, have revealed that deep
problems exist with any attempt to estimate this kind of data:

1. Most people seem to be quite poor at estimating their number of
friends reliably.

2. Methodological tricks to circumvent this difficulty (such as requir-
ing subjects to keep written records of all interpersonal encounters
over an extended period of time) are time and labour intensive.

3. The number (however it is estimated) changes over time.

4, The number is highly sensitive to the definition of a “meaningful”
or “substantive” contact or relationship.

Of all these points, perhaps the last is the most damning because it
threatens the validity of any result that does not perform at least several
identical surveys of acquaintanceship volume using different definitions
of what constitutes acquaintanceship in each (for instance, first-name ba-
sis versus propensity to lend money). This is a similar objection to that
raised earlier concerning the definition of “social distance”: acquain-
tanceship, like distance, can vary widely depending on any one or all
of the following: (1) the biases of the observer, (2) the question being
posed, and (3) the members of the network in question.
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2.1.3 Reframing the Question to Consider 4/ Worlds

Given the difficulties inherent to empirical investigations of the small-
world phenomenon (and the structure of social networks in general),
theoretical investigation seems attractive, if only as a means of focus-
ing future questions for empiricists to answer. Theoretical approaches,
however, also seem to have some serious limitations in the regime of in-
terest, at least if one insists upon analytical solutions. What is needed,
then, is a new theoretical approach that attempts to exploit the general-
ity of theory without falling prey either to overly restrictive idealisation
of network structure (“throwing the baby out with the bathwater”) or
to impenetrable thickets of numerical solutions in a forest of arbitrary
parameters. The motivation behind the work presented here is to chart
just such a course by ignoring much of the sociological detail inherent in
previous models and considering a much more general statement of the
problem:

Assuming that a network can be represented by nothing more than
the connections existing between its members and treating all such
connections as equal and symmetric, a broad class of networks can
be defined, ranging from highly ordered to highly random. The ques-
tion then is Does the Small-World Phenomenon arise at some point in
the transition from order to disorder, and if so, what is responsible for
it? In other words, What is the most general set of characteristics that
guarantee that a system will exhibit the small-world phenomenon, and
can those characteristics be specified in a manner independent of the
model used to create the network?

As yet, the small-world phenomenon has not been defined precisely
in terms of which specific properties a network must possess in order to
exhibit it. This will be deferred until after some exploration of differ-
ent network topologies yiclds the kind of intuition that will be needed to
motivate the appropriate definition. Even so, it should be apparent that
if the goal stated above can be achieved, a great deal can be said about
the existence of the small-world phenomenon, in what systems it is likely
to arise, and in what sort of applications it might be useful. Before con-
tinuing, however, some basic terminology and results are required from
the theory of graphs that will help to describe and define the networks
and properties of interest.
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Vertex

Edge

Figure 2.1 A general graph.

2.2 BACKGROUND ON THE THEORY OF GRAPHS

2.2.1 Basic Definitions

A graph, in its most basic sense, is nothing more than a set of points
connected in some fashion by a set of lines (see Fig. 2.1). The following
definition of a graph is taken from Wilson and Watkins (1990).

Definition 2.2.1. A graph G consists of a nonempty set of elements,
called vertices, and a list of unordered pairs of these elements, called
edges. The set of vertices of the graph G is called the vertex set of G,
denoted by V(G), and the list of edges is called the edge list of G,
denoted by E(G). If v and w are vertices of (, then an edge of the
form vw is said to join or connect v and w.

The number of vertices in V'(G) is termed the order of the graph
(n), and the number of edges in E(G) is termed its size (M). Graphs
can be used to represent all kinds of networks, where the vertices rep-
resent network elements (such as people, animals, computer terminals,
organisations, cities, countries, production facilities) and the edges rep-
resent some predefined relationship between connected elements (such
as friendship, prey-predator relationship, Ethernet connection, business
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alliance, highway, diplomatic relationship, product flow). Clearly both el-
ements and connections may embody any number of characteristics, but
the theory of graphs generally deals only with the number of elements in
the network and their relationships with respect to each other in terms
of the characteristics of the edge set.

This very broad definition is capable of representing systems in bewil-
dering detail. The only graphs that will be considered here, however, are
those that conform to the following restrictions:

1. Undirected. Edges exhibit no inherent direction, implying that any
relationship so represented is symmetric,

2. Unweighted. Edges are not assigned any a priori strengths. Hence
any importance that specific edges may later assume derives solely
from their relationship with other edges.

3. Simple. Multiple edges between the same pair of vertices or edges
connecting a vertex to itself are forbidden.

4. Sparse. For an undirected graph, the maximal size (M) of E(G)=
(3) = n(n — 1)/2, corresponding to a “fully connected” or complete
graph. Sparseness implies M < n{n — 1)/2.

5. Connected. Any vertex can be reached from any other vertex by
traversing a path consisting of only a finite number of edges.

These assumptions obviously compromise the ability of the resulting
models to form realistic representations of many networks. Relationships
are often directed {child-parent, teacher-student, and so on), and some
are clearly more important than others; many real networks are not con-
nected, and often multiple types of relationships exist between the same
set of clements (like business and friendship ties). However, aside from
simplifying the resulting analysis a great deal, these assumptions do form
a natural starting point for modelling networks in that they introduce a
minimum amount of arbitrary structure whilst still allowing meaningful
questions to be asked of the network as a whole.

Although graphs can be represented pictorially, most computations of
graph properties are accomplished by way of either an adjacency matrix
or adjacency list. The adjacency matrix M(G) is the 1 X n matrix in
which M; ; is the number of edges joining the vertices i and J. In the
unweighted case, all entries would be either ¢ or 1. The adjacency list
simply lists all vertices of the graph and, next to each, the vertices with
which it is adjacent. The number of edges incident with a given vertex v
(that is, the size of v’s adjacency list) is called the degree of v, denoted k.
One statistic that will be referred to frequently is the average degree of
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the graph, k. Hence, for undirected graphs, k quantifies the relationship
between # and M (M = (n - k)/2). The corresponding effect on k of the
sparseness condition above is that all graphs must have k <« n. A graph
in which all vertices have precisely the same degree & is called k-regular
or just regular.

2.2.2 Length and Length Scaling

One of the most important statistics of graphs to be considered here is
the characteristic path length (L(G)), that is, the typical distance d(i, j)
between every vertex and every other vertex. “Distance” here refers not
to any separately defined metric space in which the graph has been em-
bedded, but to a distinct graph metric—simply the minimum number of
edges (in the edge set) that must be traversed in order to reach ver-
tex j from vertex i, or in other words the shortest path length between
i and j. Investigations of this graph invariant have a long history, span-
ning several subject areas and utilising a number of approaches. As long
ago as 1947, Wiener (1947) investigated the sum of all distances be-
tween all pairs of vertices in a graph (sometimes called the “Wiener
index”) in connection with the boiling point of paraffin, where the ver-
tices of the graph were to represent atoms and the edges, intramolecular
bonds. Since then both the sum of all distances in a graph as well as the
average distance across all pairs of vertices have appeared as parame-
ters relevant to social status in a hierarchy (Harary 1959), architectural
floor plans (March and Steadman 1971), the performance of computer
networks (Frank and Chou 1972) and telecommunication networks (Lin
1982; Pippenger 1982; Chung 1986), and the physical properties of as yet
unsynthesised hydrocarbons (Rouvray 1986).

Throughout all this the problem of finding a closed-form expression
for the characteristic path length of a general, connected graph® has re-
mained impregnable, and researchers have had to satisfy themselves with
the explication of upper and lower bounds upon the quantity for vari-
ous classes of graphs. Cerf et al. (1974) determined a lower bound on
the average d(i, j) in a k-regular graph by assuming a perfectly expand-
ing graph. That is, starting from any vertex, k vertices can be reached
at distance 1, then from each of these vertices another (k — 1) new ver-
tices can be reached at distance 2, and so on, without any redundancies,
until the entire graph has been reached. This type of graph, known as a
Moore Graph, is the most efficient possible k-regular graph, in the sense
that every vertex “reaches” k new vertices, but it has since been proven
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unrealisable except in a handful of special cases in which it is possible
to close the graph upon itself with no redundancies (Chung 1986). An
important result of studying Moore Graphs as a theoretical lower bound
(even if unattainable) is that, for & > 2, the characteristic path length in
any regular graph must grow at least logarithmically with n. We will see
later that random graphs are good approximations to this lower bound.

Entringer et al. (1976) showed that the sum of all distances in any
graph must lie between that of a complete graph and that of a one-
dimensional chain, where each vertex has k = 2. Doyle and Graver
(1977) later showed that a cycle—a chain with its ends connected—has
the maximal characteristic path length of any graph with periodic bound-
aries. Whilst this result does not necessarily extend to higher k (where
vertices are connected to nearest neighbours, next-nearest neighbours,
and so on), it suggests that cycles with larger & have close to the max-
imum possible characteristic path length for a given n and k. It also
suggests that the cycle is a particularly interesting object because it is,
at once, the most and least efficient 2-regular structure. In fact, it is the
only 2-regular structure and has the additional property that it is also
2-connected, which is to say that the deletion of any two edges will dis-
connect the graph. Hence it is the only minimally connected, regular
graph topology—a fact that will be useful in Chapter 3.

Following this work, tighter bounds on the average distance or sum of
all distances have been determined for specific classes of graphs (Buck-
ley and Superville 1981), digraphs (Plesnik 1984), trces (Winkler 1990;
Entringer et al. 1994), and random graphs (Schneck et al. (1997). The
greatest problem with these attempts is that they either impose very loose
bounds on the quantity of interest or else require strong constraints on
the class of graphs to which the bounds apply. In either case, the results
do little to assist the task of actually determining a characteristic path
length for an arbitrary graph.

Recently some new approaches have been developed by (amongst oth-
ers) Chung (1988, 1989, 1994) and Mohar (1991), which place bounds
on the characteristic path length without restricting the variety of eligible
graphs. Unfortunately these bounds are necessarily expressed in terms
of other graph invariants that are virtually as inaccessible as the charac-
teristic path length itself.” Interesting though such relationships between
graph invariants are, they do not really help much if the primary aim
is specifically that of computing or estimating length. They also suggest
that analytical formulae for the length characteristics of graphs are, in
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general, hard to come by. Hence a heavy reliance on numerical results
SEEems appropriate.

At this point, it might seem that the obvious and natural definition of
characteristic path length would be d(i, j) averaged over all () pairs of
vertices and that this is best computed numerically for a known graph.
Unfortunately, for large », this becomes impractical to compute exactly,
so a random sampling technique is needed to estimate the length to
within a prescribed accuracy. Using such a sampling technique, it turns
out that it is significantly easier to estimate the median shortest path
length than it is the mean. As the mean and the median are practically
identical for any reasonably symmetric distribution, then the sampling ef-
ficiency of the median seems to mark it as the most appropriate measure
of length in a graph. However, the median suffers from a different draw-
back, which is that it is integer-valued. As the scaling properties of length
with respect to increasing # are also of interest, and as the characteris-
tic path length of some graphs remain on the same order of magnitude
over several orders of magnitude in », then an integer-valued length can-
not provide sufficiently detailed information. A reasonable compromise,
which incorporates most of the sampling convenience of the median,
with the real-valued advantage of the mean is the following.

Definition 2.2.2. The characteristic path length (L) of a graph is the me-
dian of the means of the shortest path lengths connecting each vertex
v € V(G) to all other vertices. That is, calculate d(v, j) Vj € V(G)
and find d, for each v. Then define L as the median of {d,}.

As mentioned above, for large » a random sampling technique is used
that is due to Huber (1996). According to this method, d,, is calculated
for a randomly selected subset of s vertices, where s is determined as
follows:

Finding an approximate median through sampling is relatively
straightforward. First, take s samples, then find the median of the
samples. More generally, call M, a g-median if at least gn of the
numbers in the set ({1) are less than or equal to M, and at least
(1 — g)n of the numbers are greater than or equal to M.

Call L, 5, a (g, 8)-median if at least gn(1 — 8) numbers in the
set are less than or equal to L, 4 and at least (1 — g)n(l — 3) of
the numbers are greater than L, 5. Equivalently, L, 5) = M4 for
some q' that satisfies (1 — 8)g < ¢’ < (1 + 8)q.

Finding such a value L, 5 that is correct with high probability is
much faster than finding M, which takes linear time. To find a value
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for L, 5, take s samples and look at the g-median of the sample
(p- 2).

Theorem 2.2.1. The above algorithm yields a correct value for L, 5 with
probability 1 e if s samples are taken, where s = (2/4%) In(2/e)1/(8)?
and & = 1/(1 - 8) — 1 = §/(1 — 8). Note that when & is small, 5 ~ &
(Huber 1996).

The computation required by Definition 2.2.2 is less efficient than that
actually proposed by Huber, which samples only s pairs of vertices in-
stead of s complete search trees. However, the difference in computa-
tional time is only a constant factor and so is a reasonable sacrifice to
make for the utility of a real-valued measure of length.

Having established either an exact (convenient in practice only for
n 5 1,000) or approximate value of the characteristic path length, the
question arises: how does L scale with respect 10 changes in n and k?
This question is important because the scaling of L is more indicative of
the qualitative structure (or topology) of a graph than the specific value
of L itself. Precisely what is meant by maintaining the qualitative struc-
ture of a graph whilst changing » and & will become more apparent in
Chapter 3 in terms of one-parameter families of graphs (parameterised
by some parameter p) that interpolate between order and randomness.
The point is that different values of the parameter p represent differ-
ent qualitative structures and that graphs of different # and k, but with
the same p value, are qualitatively the same. This leads to the following
definitions.

Definition 2.2.3. For a fixed p, the length scaling with respect to n of
G(p) is

e L(G(p;my, k))
for n; > n; and 1 € k « my, n,. T s said to exhibit d-scaling with
respect to n if

1
i (LS 0) i
moe \ L(G(p; s, k) ”z%
Definition 2.2.4. For a fixed p, the length scaling with respect to k of
G(p) is

. {L(G(p;n, k1))
I
ni”é(L(G(p; 1))
for ky > ky and 1 € kq, &k, « n.
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Figure 2.2 The neighbourhood of a vertex v (a) with vertex v included
and (b) showing only the edges between vertices in I'(v).

Hence the parameter p defines an infinite set of graphs, each of which
exhibits certain structural characteristics common to the set. The charac-
teristic path length of a member of such a set can vary over 1 < L < o0,
but the scaling property is invariant across the entire set. This is why
the idea of scaling is so useful in characterising the qualities of a given
graph: one can compute exactly the properties of small graphs with a
given p and then, knowing their scaling properties, also obtain knowl-
edge of their much larger cousins whose properties cannot be computed
directly.

2.2.3 Neighbourhoods and Distribution Sequences

One recurrent theme throughout this book is the metaphor of infor-
mation “spreading” from a single vertex throughout the graph. In con-
nected graphs, there is no issue of whether or not the entire graph will
be reached, but only the number of “steps” required to achieve this. The
notion of a step is captured in terms of the neighbourhood either of a
vertex (see Fig. 2.2) or a connected subgraph.

Definition 2.2.5. The neighbourhood T'(v) of a vertex v is the subgraph
that consists of the vertices adjacent to v (not including v itself).
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TABLE 2.1
Distribution Sequence for Kevin Bacon in
the “Kevin Bacon Graph” (April 1997)

J (Bacon number) [T, A;

0 1 1

1 1,181 1,182
2 71,397 72,579
3 124,975 197,554
4 25,665 223,219
5 1,787 225,006
6 196 225,202
7 22 225,224
8 2 225,226

Definition 2.2.6. The neighbourhood I'(S) of a connected subgraph § is
the subgraph that consists of all vertices adjacent to any of the vertices
in S, but not including the vertices of S.

Definition 2.2.7. In the special casc where S = I'(v), I'(§) = I'(T'(v)) =
(). More generally [(T“"!(v)) = T*(v), the ith neighbourhood of v.
Hence I''(v) = {v}.

Definition 2.2.8. The sequence A;(v) = Zf:u ITi(v)| for 0 < j < j__ s
the distribution sequence for v, where A i (V) = |G

Definition 2.2.9. A; = A(v) over all v € V(G) is the distribution se-
quence for G.

It follows immediately from these definitions that max, (/. (v)) = D,
the diameter of the graph. The functional form of A; Is indicative of
the rate at which information “spreads” throughout a graph (think of a
signal spreading from vertex to vertex along the edges, where all edges
take equal “time”) and hence the structure of the graph itself. Table 2.1
gives a real example of a distribution sequence for none other than the
illustrious Kevin Bacon, where j is the Bacon Number, and A; is the
number of actors and actresses who have a Bacon Number of J or less,

2.2.4 Clustering

The idea of a neighbourhood is also useful in quantifying another statis-
tic that will be of interest in this work, namely, the clustering coefficient
of a graph.
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Definition 2.2.10. The clustering coefficient vy, of I", characterises the
extent to which vertices adjacent to any vertex v are adjacent to each
other. More precisely,

_ |E@)
‘YU - ku ?
(3)
where |E(T,)| is the number of edges in the neighbourhood of v and

(%) is the total number of possible edges in T,

That is, given k, vertices in the subgraph I, at most ("2) edges can be
constructed in that subgraph. Hence v, is simply the net fraction of those
possible edges that actually occur in the real I',. In terms of a social-
network analogy, 7y, is the degree to which a person’s acquaintances
are acquainted with each other and so measures the cliguishness of v’s
friendship network. Equivalently, vy, is the probability that two vertices
in I'(v) will be connected. A measure of clustering over the entire graph
is then in following.

Definition 2.2.11. The clustering coefficient of G is vy = vy, averaged over
all v € V(G). Hence ¥ = 1 would imply that the corresponding graph
consisted of n/(k + 1) disconnected, but individually complete, sub-
graphs (cliques), and y = 0 would imply that no neighbour of any
vertex v is adjacent with any other neighbour of v.

2.2.5 “Lattice Graphs” and Random Graphs

There are many other graph statistics that could (and probably should)
be measured. But already it is possible to make a crude examination of
graph structure, starting with some special classes of graphs that will be
useful points of reference in Chapters 3 and 4, namely lattice graphs (or
d-lattices) and random graphs.

Properties of d-Lattices

Definition 2.2.12. A d-lattice is a labelled, unweighted, undirected simple
graph that is similar to a Euclidean cubic lattice of dimension d in
that any vertex v is joined to its lattice neighbours, u; and w;, as
specified by

u; = [(u — id‘) + n] (mod n),

w; = (v+ id’) (mod n),
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Figure 2,3 Example of a 1-lattice with & =4,

where 1 < i < k/2, 1 <d < d, and it is generally assumed that
k > 2d.

Hence a 1-lattice with £ = 2 is a ring, a 2-lattice with Xk = 4 is a two-
dimensional square grid, an so on (see Figs. 2.3 and 2.4 for examples).
In principle, k can be any number (although it makes sense to require
k > 2d), and so we could have a 1-lattice with k¥ = 10, in which case
nearest neighbours, next-nearest neighbours, and so on would be con-
nected (see Fig. 2.5 for another example). These structures are particu-
larly convenient because their characteristic path lengths and clustering
coefficients can be calculated explicitly. For a 1-lattice with even &k > 2,
simple enumeration shows

n(n+k—2)
L=k =D
and
3(k -2)
YTAG STy

It is obvious from these statements that L for a 1-lattice scales linearly
with respect to n (for large #) and inversely with respect to k. The same
length-scaling property can be inferred by considering the distribution se-
quence of a 1-lattice. Again, simple enumeration leads to the conclusion
that |I“(v)| = k for all v and i. Hence A; = jk, which is linear in j—the
number of “degrees of separation.” Necessarily, a linearly increasing dis-
tribution sequence corresponds to linear length scaling with #. Unlike L,
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Figure 2.4 Example of a 2-lattice with & = 4 (boundaries are periodic).

Figure 2.5 A single vertex in a 2-lattice with k£ = 8.

v for a 1-lattice is independent of n and approaches 3/4 for sufficiently
large k, at which point it is effectively independent of & also. Hence any
I-lattice can be characterised by its length-scaling and clustering properties.
Similar statements hold for lattices in higher dimensions, which exhibit
d-scaling as defined above.
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Properties of Random Graphs

Strictly speaking, the kinds of random graphs discussed in this section
do not appear very often in this book. However, they do constitute an
important limiting case and, along with d-lattices, are frequently used as
standard yardsticks in later chapters. They are also historically the root
from which a number of serious investigations of the structure of social
networks have sprung (the classic example being Harary 1959). Hence it
is appropriate to run though at least the major classes of random graphs,
some relevant terminclogy and definitions, and a few significant results
that help in understanding and contextualising this work.

In its broadest sense, a random graph of order # is nothing more than
a vertex set, consisting of n vertices, and an edge set that is generated
in some random fashion. The set of all such graphs is called 4”. Almost
all of random graph theory, however, concerns itself with the analysis
of one of two models of random graphs, referred to as G(n, M) and
G(n, p), respectively, and the relationship between them. Many of the
fundamental properties of these two models, along with the techniques
used to analyse them, were developed in the late 1950s and early 1960s
in a series of papers by Erdos and Rényi (1959, 1960, 1961a, 1961b),
but all the material included here is referenced to the standard text on
random graphs by Bollobas (1985).

Definition 2.2.13. G{(»n, M) is a labelled graph with vertex set V(G) =
{1,2,..., n}, having M randomly chosen edges (where M usually de-
pends on n). G(n, M) is frequently abbreviated as G,.

Definition 2.2.14. G(n, p) is a labelled graph with vertex set V(G) =
{1,2,..., n}, in which every one of the possible (}) edges exists with
probability 0 < p < 1, independent of any other edges. G(n, p) is
frequently abbreviated as G .

Random graph theory basically defines the conditions under which
graphs belonging to ¢ither Gy, or G, possess a given property Q (for
example, that it is connected), usually in the limit » — co. Roughly
speaking, broadly similar graphs with the same number of vertices share
the same properties, and random graph theorists are interested in finding
the conditions upon either M or p under which a particular property
emerges in almost all graphs of the relevant model, in the infinite limit
of n.

It turns out that for most purposes Gy, and G, are practically inter-
changeable, provided that M >~ pN. G, is easier to prove theorems with
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because the edges are independent, whereas in G,y (because the total
number of edges is fixed) there is necessarily some dependence of an
edge being chosen, based on previous choices. This dependence is smali,
however, and does not affect any of the important results, so hereafter
both models will be referred to simply as random graphs.

One of the most striking results of random graph theory is that most
monotone properties® appear suddenly. That is, there exists a threshold
function M*(n) that determines whether or not a graph is either very
unlikely or very likely to have the property Q. This threshold can be de-
fined in a number of ways, but perhaps the most intuitive is to think of
4" as a graph process. That is, starting from a vertex set with no edges,
edges are added one-by-one in a random fashion, where each addition
is regarded as a unit of time. The threshold function M*(n) is then re-
garded as a critical time, before which the property is unlikely to exist,
and after which it is very likely, There are certain technical issues sur-
rounding the uniqueness of these functions and how they differ between
models, but these are not of concern here. The important thing to un-
derstand is that if we imagine random graphs as dynamic “organisms,”
growing in time, then the appearance of practically any property of in-
terest will occur on a timescale that is very short compared with the
timescale of the whole process. Similarly, if we imagine the development
of random graphs as a trip through parameter space, then all the action
happens in a very narrow region of that space.

This threshold function is strongly reminiscent of second-order phase
transitions that have been well studied in statistical physics (see, for ex-
ample, Stauffer and Aharony 1992) and that appear in the dynamical
systems in Part II. Furthermore, even though the graphs considered in
this book are not random graphs in the strict sense, and even though the
number of edges M(n) is preserved for all parameter values, precisely
this kind of rapid transition occurs in terms of their large-scale, statisti-
cal properties. This interesting similarity and its connection with random
graph theory receive more attention in Chapter 4.

Of all properties Q, none seems to have received more attention than
connectedness. At which point in a graph process do the graphs become
connected? What is their structure before they become connected? How
do they make this transition? And once they are connected, how con-
nected are they? That is, how many edges could be removed before they
would once again be disconnected, and what is the expected distribu-
tion of completely connected subgraphs (cligues)? These are some of
the major issues that have been addressed by random graph theorists
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over the last forty-odd years. However, because the primary statistic of
interest here is the characteristic path length (L), and because discon-
nected graphs have infinite L, only connected graphs will be considered.
Admittedly this approach glosses over some important and interesting
questions that are relevant to a completely general treatment of length
in graphs. However, the resulting simplicity is useful for a first pass at the
problem, and there is still much of interest to be learned. As far as ran-
dom graphs are concerned, a famous theorem by Erdos and Rényi (1959)
guarantees that “almost any” random graph with more than r/21n(n)
edges (equivalent to k > In(n)) will be connected.” In practice, for finite
n, it is sufficient simply to set k > 1 and check that no disconnected
graphs are generated.

A final issue of interest is that of the diameter D of a random graph.
This is important because, in random graph theory, the diameter is the
principal measure of the characteristic path length of a graph, presum-
ably because it is easier to prove theorems about than measures like
the mean or median shortest path length. As we will see in Chapter 4,
however, the mean path length of a random graph is dominated by the
diameter, and so all the important results about diameter apply, more
or less, to the notion of characteristic path length. There are two results
concerning the diameter that are of interest here: the diameter of a ran-
dom graph with a maximal degree of two, and the diameter of a random
graph of arbitrary degree. The reason for the distinction is that one of
the models in Chapter 3, for reasons to do with connectivity, 1s based on
a regular connected substrate of degree two. Hence the length-scaling
characteristics of such substrates are important to know. For instance, a
cycle {or topological ring) with n vertices and k = 2 has D =~ n/2 and
thus exhibits linear length scaling. It turns out that this is true for any
graph with a maximal degree of two, which is really equivalent to saying
that any regular graph with & = 2 is a ring and so will exhibit a char-
acteristic path length that scales linearly with respect to n. As random
graph theory is almost always concerned with the properties of random
graphs as n - oo, little is said about D as a function of » for arbitrary
k. Still, two things seem clear from Bollobas’s treatment of the problem:

1. Almost all random graphs with the same »; have the same D, for
sufficiently large p (or k).

2. Random graphs are likely to be “spreading”; that is, the jth neigh-
bourhood [(v) includes mostly “new” vertices, vertices that have
not been included at smaller j. Hence the number of vertices within
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a distance j of any vertex v is never much less than k(k —1)/~!. This
represents an exponentially growing distribution sequence, which
implies that j ., ~ In(n)/In(k).

Both these statements will be useful in the later numerical experi-
ments: the first because it implies that the details of the construction
algorithms of Chapter 3 should not be important in the random limit,
and the second because it means that random graphs must have close to
the smallest possible L for any fixed n and k.

2.2.6 Dimension and Embedding of Graphs

Although graphs are not usually defined in terms of any underlying Eu-
clidean space, and most problems in graph theory do not require graphs
to exist in any such space, it will still be useful to think about what
dimension would be required if they did. More specifically, any given
graph can be thought of as a set of peints embedded in a Euclidean
space, where the Euclidean distance between any two points is just the
shortest path length between the corresponding vertices, to within some
distortion. The operative question then is, For a given distortion, what
is the minimum dimension Euclidean space required to embed a given
graph? Of course, there is nothing unique about the Euclidean metric, ‘
and we could just as well ask the same question of any metric space.
But Euclidean spaces are a natural choice because they are familiar, and
also because the limiting cases for some of the models in later chap-
ters is a d-lattice, which embeds precisely into R?. This dimension is the
embedding dimension, defined as follows.

Definition 2.2.15. For a graph G and distortion ¢ > 1, the embedding
dimension dim.(G) is the least dimension ¢ such that there is an em-
bedding ¢ of G into R? where every two vertices i, j € G satisfy

(i, j) 2 16() — 6] = - dGi ).

A theorem by Linial et al. (1995) guarantees that any graph with n
vertices can be embedded in RY™. with distortion ¢ < (1 + €)c*, where
dim, = O(logn) and ¢* = O(log n). Linial’s theorem is rather more gen-
eral than this, but this restricted version is sufficient,

At this point, a few observations seem appropriate. First, this theo-
rem (which Linial et al. actually present as an embedding algorithm) is
closely related to the techniques of muldtidimensional scaling described in
Section 2.1.1.

o]
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Second, for a fixed n, graphs with different topologies will, in general,
have different embedding dimensions. For instance, it is obvious (even
without Linial’s thearem) that a d-lattice of any size will always have an
embedding dimension of d, whereas for a random graph we are only
guaranteed that dim.(G) = O(logn). The implication here is that, at
least in the limit # — oo, random graphs “live” in R*, whereas in the
same limit, d-lattices “live” in R¢. This raises the conceptual challenge
of what would happen to the dimension of a graph if it were to have its
edges switched around one-by-one, causing it to move from a d-lattice
to a random graph, This is a significant issue that will not be resolved
here and that seems to be an interesting open research question.

Finally, if a graph has an embedding dimension d, then we might
expect that its distribution sequence would grow like A; j4. Certainly
this seems plausible, if only by analogy to the distribution sequence of a
d-lattice, which must necessarily grow in this fashion. The corresponding
result for random graphs would be a distribution sequence that grows
exponentially. The flip side of this observation is that one might expect
any graph whose characteristic path length L(r) scales logarithmically
with respect to n to have a distribution sequence that grows exponentially
with distance, and so it can be embedded only in a In(n)-dimensional
space. One of the main results of the next chapter is that such graphs
appear to be much more common than one might think.




CHAPTER 1
KEVEN BACON, THE SMAILL WORLD, AND WHY IT ALL MATTERS

1. The “Oracle of Bacon” website, created by Brett Tjaden and Glenn Was-
son, is located at www.cs.virginia.edu/bct7m/bacon.html.

2. http://www.us.imdb.com.

3, This fact, along with all others to do with the Kevin Bacon Game cited
in this book, was correct as of April 1997. Since then the database has been
extensively updated, but nothing essential has changed.

CHAPTER 2
AN OVERVIEW OF THE SMALL-WORLD PHENOMENON

1. This is essentially because, in a randomly connected system, the total num-
ber of members “reached” grows exponentially with increasing degree of sepa-
ration, and 1,000 x 1,000 x 1,000 is greater than the population of the United
States.

2. The only difference between Barnes’s density and clustering is that here v
is not included as a member of its own neighbourhood—an attribute of some
convenience because it allows clustering of zero.

3. In the telephone book method, subjects are asked to name acquaintances
who have the same last names as those that appear on an imaginary “page” of a
telephone directory, which is then treated as a representative subset of the entire
population.

4. This calculation works because, in a population where acquaintance prob-
abilities are independently distributed, the number of members linked to A by
an acquaintance chain of less than a specified “length” grows exponentially with
the length. Hence one thousand “friends” each is many more than is required
to encompass the entire U.S. population within six handshakes.

5. In other words, if a network consists of only a few elements, or if at least
one element is connected to a significant fraction of the total population, then
it is not surprising that it should be “small,” in which case there is nothing to
explain.

6. Most researchers have confined themselves to the study of connected
graphs because of the obvious problems associated with the apparent infinite
lengths of disconnected graphs.
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| 7. One method relates the average distance to the independence number of ;
| the graph, that is, the maximum size of a subgraph such that every pair of ver- |
' tices in the subgraph are nonadjacent. Another utilises the eigenvalues of the |
adjacency matrix or the closely related Laplacian matrix, which treats the graph ,
as a system of masses coupled by linear springs in place of the edges. The eigen- "
values then characterise the modes of oscillation of the resulting coupled system.
See Fiedler (1973) and Cvetkovic et al. (1979) for an explanation of the Lapla-
cian matrix and the properties of its eigenvalues.

8. Monotone means just that if a particular random graph G possesses Q,
then any graph H that includes G as a subgraph will also have Q.

9. There are a number of technical subleties to this result. See Chapter 10
of Alon and Spencer (1992) for a reasonably accessible description of the ap-
pearance (at k = 1) of the giant component, which proceeds to swallow up all
remaining vertices, including the last few isolates when & 2 In(n).

CHAPTER 3
BIG WORLDS AND SMALL WORLDS: MODELS OF GRAPHS

1. This rapid rise as fraction of mutual friends — 1 is present mostly for the
purpose of enforcing continuity, but it could be justified, in modelling terms, by
the argument that, even in such a random world, if two people have ali their
current friends in common, then they can’t really avoid knowing each other.

2. There are many reasonable choices for p, but, whilst the specific choice can
affect the results quantitatively, it appears to make little gualitarive difference so
long as it is sufficiently small (that is, p « (3)71). Here p is set at 10710 for all
numerical experiments.

3. Perhaps this should not be surprising, given Bollobas’s observation of (1985,
p- 41) that almost all random graphs of the same order (n) and size (M) are the
same (in the sense that for any property @, almost all graphs have Q or almost
none of them do), regardless of the model (G(n, M) or G(n, p)) used to create
them.

4. The data points for L{a) and also y(«a) were averaged over one hundred
random realisations of the construction algorithm (which, recall, makes connec-
tions at random but biased by the presence of mutually adjacent vertices) to re-
duce statistical fluctuations. In general, these fluctuations do not affect the qual-
itative nature of the data. Hence for convenience (where not otherwise noted), i
only a single realisation of the construction algorithm is used to generate results.

5. This is simply the probability that, when a vertex creates a new edge to
another vertex with uniform random probability over the entire graph, that vertex
will be in the same neighbourhood.

6. Of course, for manageable values of n, n'/?, and In(n) can be impossible to
distinguish in practice, for any but small 4. Hence only two-dimensional lattice
substrates will be considered in detail.

7. The main difference between a S-graph with 8 = 1 and a true random
graph is that ail vertices in the B-graph are guaranteed to have degree at least
k /2. Vertices, however, are still connected fo at random, so a nonzero variance in




