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NEWS

Version 0.13.0 brings some major updates to the package which dramatically increase the
robustness and speed of the estimation procedure, as well as extend the functionality of the
GERGM to simplex constrained networks, and larger networks. Note that these updates may
cause the estimation procedure to yield slightly different results from the previous version of the
package. In general, we have found these changes to improve model fit, but please email
matthewjdenny@gmail.com if you encounter any issues. If you would like to approximate the
behavior of the gergm() function before package version 0.13.0, you should set use_previous_thetas

= FALSE and convex_hull proportion = NULL .

Introduction

This vignette is designed to introduce you to the GERGM R package. GERGM stands for
Generalized Exponential Random Graph Model. This class of models was developed to
characterize the structure of networks with real-valued edges. GERGMs represent a generalization
of ERGMs, which were developed to model the structure of networks with binary edge values, and
many network statistics commonly included in ERGM specifications have identical formulations in
the weighted case. The relevant papers detailing the model can be found at the links below:

» Bruce A. Desmarais, and Skyler J. Cranmer, (2012). “Statistical inference for valued-edge
networks: the generalized exponential random graph model”. PloS One. [Available Here]

= James D. Wilson, Matthew J. Denny, Shankar Bhamidi, Skyler Cranmer, and Bruce Desmarais
(2017). “Stochastic weighted graphs: Flexible model specification and simulation”. Social
Networks, 49, 37—-47. [Available Here]

» Paul E. Stillman, James D. Wilson, Matthew J. Denny, Bruce A. Desmarais, Shankar Bhamidi,
Skyler Cranmer, and Zhong-lin Lu. (2017). “Statistical Modeling of the Default Mode Brain
Network Reveals a Segregated Highway Structure”. Scientific Reports, 7(11694), 1-14.
[Available Here]

= Matthew J. Denny (2016). “The Importance of Generative Models for Assessing Network
Structure”. [Available Here]

The GERGM also relies on the initialization method of Hummel et al. as of version 0.13.0. The
paper corresponding to this method is available here:

» Ruth M. Hummel, David R. Hunter, and Mark S. Handcock (2012). “Improving simulation-
based algorithms for fitting ERGMs”. Journal of Computational and Graphical Statistics, 21(4),
920-939. [Available Here]
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The easiest way to do this is to install the package from CRAN via the standard install.packages
command:

install.packages("GERGM")

This will take care of some weird compilation issues that can arise, and is the best option for most
people. If you want the most current development version of the package, you will need to start by
making sure you have Hadley Wickham’s devtools package installed.

If you want to get the latest version from GitHub, start by checking out the Requirements for
using C++ code with R section in the following tutorial: Using C++ and R code Together with
Rcpp. You will likely need to install either xcode or rtools depending on whether you are using a
Mac or Windows machine before you can install the GERGM package via GitHub, since it makes
use of C++ code to speed up inference. That said, the development version often has additional
functionality not found in the CRAN release.

install.packages("devtools")

Now we can install from Github using the following line:

devtools::install_github("matthewjdenny/GERGM")
Once the ceram package is installed, you may access its functionality as you would any other
package by calling:

library(GERGM)

If all went well, check out the vignette("getting_started”) which will pull up this vignette!

Basic Usage

We begin by loading in some example network data. In our case, these data are (logged)
aggregate public and private lending volumes between 17 large countries from 2005. The data are
included in the GERGM package and were used in the Wilson et. al. study listed at the beginning
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The GERGM package provides a pilot_network() function, which we can use to visualize the
network as follows:

library(GERGM)
set.seed(12345)
data("lending 2005")
data("covariate_data_2005")
data("net_exports_2005")
plot_network(lending_2005)

Edge Values
0 14.14

Alternatively, if we prefer a white background, and no legend, we can select options for this as well.
Typing ?plot_network into the console will pull up a manual for this function.

https://www.mjdenny.com/getting_started_with_ GERGM.html 3/12



2/19/2021 Getting Started With GERGM

Gettlng-loset%a »Vltwﬂggﬁg%ﬁhmg Resources Blog

L S S A 8 A o A R S A A . "L B & R AR ® TR SRS o v v vTIT W T vV TS s
PR A ubi - R A 9 9 '~

application from the Wilson et. al. paper, that will hlghllght creating a formula object with node and
network level covariates, as well as endogenous (network) effects. While this model will not
provide a perfect fit to the data, it serves to illustrate a number of key concepts. If we look at the
first couple of rows of the covariate_data_2005 Object, we can see that it include information about
each country’s log GDP and whether it was a member of the G8.

head(covariate_data_2005)

## GDP log GDP G8
## ARG 2.229108e+11 26.13004 No
## AUS 6.933386e+11 27.26478 No
## BRA 8.921068e+11 27.51685 No
## CAN 1.164144e+12 27.78301 Yes
## PRC 2.268594e+12 28.45018 No
## FRA 2.203679e+12 28.42115 Yes

To model this network, we are gong to include an edges term, which functions similarly to an
intercept term in a regression model and parameterizes the density of the network. We are also
going to include sender and receiver effects for a country’s GDP. These parameters are designed
to capture the effects of having a large economy on the amount of lending a borrowing a country
does. We are also going to include a nodemix term to capture the propensity for members and non-
members of the G8 to lend to each other, compared to the base case of non-G8 to non-G8
member lending. The last covariate effect we are going to include in the model is a netcov , Or
network covariate term, capturing the effect of the structure of the international trade network on
the international lending network. Finally, we are going to include one endogenous statistic in the
model, to capture the degree of reciprocal lending in the network. For this endogenous statistic, we
are also going to include an exponential down-weight. this means that when the value of the
network statistic is calculated, it will then be raised to the power of (in this case) 0.8. This will have
the effect of reducing its value, but more importantly of smoothing out statistic values as the
GERGM parameter controlling the propensity for mutual dyads in the network carries. Practically,
this can make it easier to get starting values for the mutual dyads parameter that are in the right
ball park, aiding in the estimation process. The formula object is defined below:

formula <- lending_2005 ~ edges + mutual(alpha = 0.8) + sender("log GDP") +
receiver("log GDP") + nodemix("G8", base = "No") + netcov(net_exports_2005)
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If you are familiar with ERGMs (for binary network data), you may have heard of an issue these
models can run into called “degeneracy”, which can make certain models impossible to estimate.
In this particular example, as with all GERGM specifications we have tried so far, the GERGM
does not seem to suffer from this issue. However, GERGMSs can still be difficult to estimate. This is
primarily due to challenges in getting good starting values for our model parameters. The current
implementation of the GERGM software does so using the method of Hummel et al. (2012), which
does a pretty good job in most cases. However, in some cases, it can be enough off the mark that
the initial parameter guesses from MPLE simulate networks that look a lot different from the
observed network. This can cause the optimizer in R (which is used to update our estimates of the
model parameters) to zoom off to infinity.

If this happens to you, do not (immediately) panic! This usually means you are dealing with a tricky
network, or a tricky specification (typically one with lots of endogenous statistics included). The first
thing to do is try to use alpha weighting. A good rule of thumb is to set aipha = 0.8 for all of the
endogenous statistics included in the model. Note that these currently include: out2stars ,

in2stars , ctriads , mutual , @and ttriads (Orjust twostars and ttriads if your network is
undirected). If this does not work, you can try cranking down the weights to around 0.5. If this still
does not work, you will need to explore the theta_grid_optimization_list option in the gergm
documentation, which should always work if given enough time (although this could be weeks,
depending on how complex your model is). A fuller example is provided at the end of this vignette.

Having discussed the challenges that come with estimating a GERGM model, lets try an example!

test <- gergm(formula,
covariate_data = covariate_data_2005,
number_of_networks_to_simulate = 40000,
thin = 1/100,
proposal_variance = 0.05,
MCMC_burnin = 10000,
seed = 456,
convergence_tolerance = 0.5)
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The output displayed in this vignette only includes diagnostic plots, and not all of the information

that would be spit out by the gergn() function if you were to run this code on your computer. All of

that output is meant to help you track the estimation process (which can take days or weeks for

larger networks), and diagnose issues with the estimation. Note that if you wish to tweak some of
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# Generate Estimate Plot
Estimate_Plot(test)

# Generate GOF Plot

GOF (test)

# Generate Trace Plot
Trace_Plot(test)

In particular, we might want to make a nicer looking estimate plot. We can do this using the
following block of code, where we leave out the intercept estimate, and provide a custom list of

parameter names to produce a publication quality plot:

Estimate_Plot(test,

coefficients_to_plot = "both",

coefficient_names = c("Mutual Dyads",
"log(GDP) Sender",
"log(GDP) Receiver",
"Non-G8 Sender, G8 Receiver",
"G8 Sender, Non-G8 Receiver",
"G8 Sender, G8 Receiver",
"intercept"”,
"Normalized Net Exports",
"Dispersion Parameter"),

leave_out_coefficients = "intercept")

Mutual Dyads -
log(GDP) Sender -

o]

o]

log(GDP) Receiver -

Non-G8 Sender, G8 Receiver -
G8 Sender, Non-G8 Receiver -
G8 Sender, G8 Receiver -
MNormalized Net Exports -

Variable

Dispersion Parameter -

2 4
Coefficient

r:.-b-ﬂ------

In order to verify the claim made earlier in this vignette that the current model is not degenerate,
we can generate a hysteresis plot for this model using the hysteresis() function. This function
simulates large numbers of networks at parameter values around the estimated parameter values
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= Snijders, Tom AB, et al. “New specifications for exponential random graph models.”
Sociological methodology 36.1 (2006): 99-153.

So long as we see a smooth upward sloping series of points, we have strong evidence that the
specification is not degenerate.

# Generate Hysteresis plots for all structural parameter estimates
hysteresis_results <- hysteresis(test,
networks_to_simulate = 1000,
burnin = 300,
range = 8,
steps = 20,
simulation_method

"Metropolis",
0.05)

proposal_variance

0.2 1
Ascending
) Bescending
0 4 8 12

Theta
As we can see this specification does not display signs of degeneracy, even though we needed to
use exponential down-weighting in order to fit the model.
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Following on from the example above, we can also predict individual edge values, conditioning on
the rest of the observed edges and estimated parameters. We can then calculate the mean
edgewise mean squared error (MSE) for these predictions, and compare it against the MSE from a
null model with no parameters included. First we generate the conditional edge predictions:

test2 <- conditional_edge_prediction(
GERGM_Object = test,
number_of_networks_to_simulate = 100,
thin = 1,
proposal_variance = 0.05,
MCMC_burnin = 100,
seed = 123)

Next we can calculate the MSE of these predictions and compare it to the null model predictions.

MSE_results <- conditional_edge prediction_MSE(test2)

## Mean MSE for Predicted Edge Values: 2162.995
## Mean MSE for Max Ent Predicted Edge Values: 43107.43

## This represents a 94.98 percent reduction in the average edgewise MSE when using the GERGM model.

As we can see, this model does significantly better in terms of conditional edgewise predictive
performance than the null model.

Correlation Matrix Estimation Functionality

The GERGM development team has recently added functionality to estimate GERGMs on
correlation matrices, as well as simulation functionality. The GERGM can therefore be used both to
assess the structural properties of correlation matrices, but also as an infinitely flexible prior for
correlation matrices. To access the this functionality, set the optional argument
beta_correlation_model = TRUE . Covariate effects are modeled using a Beta regression and then the
correlation matrix is transformed onto an unconstrained space of matrices on [0,1], where standard
GERGM modeling takes place. The resulting simulated networks can then be transformed back
onto the correlation space. Correlation matrix estimation functionality is the same as with other
undirected networks. More information on this model will be made available in mid 2017 with the

publication of a paper that is now under review. Please contact the package maintainer with further
questions.
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# from a uniform distribution.

Posdef <- function (n, ev = runif(n, 0, 10)) {
Z <- matrix(ncol=n, rnorm(n”~2))
decomp <- qr(2)
Q <- gr.Q(decomp)
R <- gr.R(decomp)
d <- diag(R)
ph <- d / abs(d)
0 <- Q %*% diag(ph)
Z <- t(0) %*% diag(ev) %*% O
return(z)

# Generate eigenvalues

X <- rnorm(10)

# generate a positive definite matrix
pdmat <- Posdef(n = 10)

# transform to correlations
correlations <- pdmat / max(abs(pdmat))
diag(correlations) <- 1

net <- (correlations + t(correlations)) / 2

# add in node names

colnames(net) <- rownames(net) <- letters[1:10]

# correlation GERGM specification
formula <- net ~ edges + ttriads

# model should run in under a minute
test <- gergm(formula,
estimation_method = "Metropolis",
number_of_networks_to_simulate = 100000,
thin = 1/100,
proposal_variance = 0.2,
MCMC_burnin = 100000,
seed = 456,
convergence_tolerance = 0.5,

beta_correlation_model = TRUE)

Common Problems and Errors

ERGMs and GERGM tend to be more challenging to fit to real world data than many other classes
of models, due to the dependence between observations. We have sought to make the GERGM
package as easy to use as possible, but it is likely that the user may still encounter some

difficulties in fitting complex models, especially to large networks. Below, we outline several
https://www.mjdenny.com/getting_started_with_ GERGM.html 10/12
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= Time: The GERGM naturally has at least order N*2 time complexity (where N is the number of
nodes in the network), which means that runtime increases exponentially as the network gets
bigger. It may also take a large number of iterations for the model to reach the target
distribution (a long burnin), and a large number of parameter updates for the model to
converge. It is not uncommon for the model to run for a week or two, even on networks as
small as 50 nodes. Runtime can also be dramatically increased by using some of the features
we have built to aid in model fitting. To some degree, this is just part of the process, and the
user should plan to run their analyses on a computer that will not be unplugged or restarted for
a few weeks. Additionally, the user may use parallelization to help speed up this process. By
setting parallel_statistic_calculation = TRUE and the cores argument to a number greater than
one, a speedup in estimation may be achieved, particularly for larger networks (more than 50
nodes).

= Zero Acceptance Rate: The Metropolis Hastings estimation algorithm works by simulating a
large sample of networks from the GERGM generative process to approximate the normalizing
constant. However, if the proposal_variance is too large or the model is very complex, then the
algorithm may never be able to accept a new network proposal, which will cause the
estimation procedure to fail. This will be evidenced by the following line in the model output,
near where an error occurs Metropolis Hastings Acceptance Rate (target = 0.25 ): © . The gergm()
function will try to automatically deal with this issue by dividing the proposal variance by 10,
and doubling the burnin and number of networks to simulate. To deal with this issue, try
reducing the proposal variance by at least an order of magnitude. You can also set
hyperparameter_optimization = TRUE , and the software will try to find an optimal proposal variance
for you. However, you can speed things up by reducing the initial proposal variance yourself. If
you are still not able to get a high enough proposal variance, try setting the
sample_edges_at_a_time parameter to an odd number in the neighborhood of 1-200. The reason
for setting it to an odd number like 159 is that this will cause the edges sampled together to
cycle through estimation (providing better model fit). The basic idea behind this argument, is
that if the model cannot accept all edges proposed together (which can be very difficult for
large networks), it may have an easier time accepting smaller changes.

= Poor Initialization: While Wilson et al. (2017) show that the GERGM does not seem to exhibit
classical likelihood degeneracy for most model specifications, if a particularly bad initialization
for the parameters is selected by MPLE, then the Metropolis Hastings procedure may simulate
networks such that the observed network is outside the convex hull of the simulated networks.
By default, the gergm() function will seek to deal with this by using the convex hull initialization
method developed by Hummel et al. (2012). The basic ideal behind this method is that if we
have a poor initialization, we pretend like the target network is “closer” to our poor initialization,
and let the optimizer try to move towards it. Then we keep iteratively moving our target
network closer to the tru network until it is in the right neighborhood and regular optimization
can take over. this method works very well most of the time, but sometimes we can still hit
issues where the optimizer misbehaves. If this happens, the optim function in R (which we use
to update the parameter estimates) will tend to zoom off to infinity in an effort to correct the
error, and the estimation procedure will crash. This is desirable behavior because such
parameter estimates (on the order of 1,000,000,000) will be meaningless. You can tell that the
model is displaying this sort of behavior if the final value after the line reading optimizing
theta estimates... inthe R outputis equal to something like -100000000000. One way to deal
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simulate networks where the observed network is inside the convex hull ot simulated
networks. If all else fails, the theta_grid_optimization_list option may be used, as in the
example in the next section. This is a brute force approach which basically tries a number of
parameter combinations around the MPLE estimates to find a combination that is good
enough that the optimizer can do its work. The downside si that this requires a lot of
computational power (and time), but this slowdown and be dramatically reduced by using
multiple cores and parallelization. Adding more node level covariate effects to the model may
also increase stability, but should not be done if those covariates are not theoretically justified.

While the above issues are not an exhaustive list, they are the most common ones we have
encountered. Please check that your issue does not fall under one of the above categories (or that
the solution described above does not work) before contacting the package maintainer.

Bonus: A More Complex Model

Here we have included code to run the full model which appears in the Wilson et al. paper. The
original version of this code required a 30 core machine to run as currently specified, and took
several days to weeks to run, depending on the computer setup. However, with the new convex
hull initialization proceedure, this model will run in a few minutes on a standard laptop, while
providing slightly better model fit. We include this more complex specification to highlight the
flexibility the GERGM package gives users to deal with more difficult to model data, and the
advances we have made in speeding up and improving estimation in the latest version of the
package.

formula <- lending_ 2005 ~ mutual(0.8) + ttriads(0.8) + out2stars(0.8) +
sender("log GDP") + netcov(net_exports_2005) +
receiver("log GDP") + nodemix("G8", base = "No")

result <- gergm(formula,
covariate_data = covariate_data_2005,
number_of networks_to_simulate = 100000,
thin = 1/100,
proposal_variance = 0.05,
MCMC_burnin = 50000,
seed = 456,
convergence_tolerance = 0.8,
target_accept_rate = 0.25)
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